0000000000286656

AUTHOR

Vicente Andreu-fernández

0000-0001-7183-8706

showing 5 related works from this author

The C-terminal Domains of Apoptotic BH3-only Proteins Mediate Their Insertion into Distinct Biological Membranes

2016

Changes in the equilibrium of pro- and anti-apoptotic members of the B-cell lymphoma-2 (Bcl-2) protein family in the mitochondrial outer membrane (MOM) induce structural changes that commit cells to apoptosis. Bcl-2 homology-3 (BH3)-only proteins participate in this process by either activating pro-apoptotic effectors or inhibiting anti-apoptotic components and by promoting MOM permeabilization. The association of BH3-only proteins with MOMs is necessary for the activation and amplification of death signals; however, the nature of this association remains controversial, as these proteins lack a canonical transmembrane sequence. Here we used an in vitro expression system to study the inserti…

0301 basic medicineProtein familyCèl·lulesBiologyBiochemistryMitochondrial Proteins03 medical and health sciencesProtein DomainsMembranes (Biologia)Protein-fragment complementation assayMembrane BiologyMicrosomesProto-Oncogene ProteinsHumansMolecular BiologyAdaptor Proteins Signal TransducingGeneticsBcl-2-Like Protein 11030102 biochemistry & molecular biologyCell MembraneBcl-2 familyProteïnes de membranaMembrane ProteinsBiological membraneCell BiologyFusion proteinTransmembrane proteinCell biology030104 developmental biologyMembraneProto-Oncogene Proteins c-bcl-2Membrane proteinB-cell lymphoma 2 (Bcl-2) family BH3-only apoptosis membrane insertion membrane protein mitochondrial apoptosis transmembrane domainApoptosis Regulatory ProteinsHydrophobic and Hydrophilic InteractionsHeLa CellsJournal of Biological Chemistry
researchProduct

Bax transmembrane domain interacts with prosurvival Bcl-2 proteins in biological membranes

2016

The Bcl-2 (B-cell lymphoma 2) protein Bax (Bcl-2 associated X, apoptosis regulator) can commit cells to apoptosis via outer mitochondrial membrane permeabilization. Bax activity is controlled in healthy cells by prosurvival Bcl-2 proteins. C-terminal Bax transmembrane domain interactions were implicated recently in Bax pore formation. Here, we show that the isolated transmembrane domains of Bax, Bcl-xL (B-cell lymphoma-extra large), and Bcl-2 can mediate interactions between Bax and prosurvival proteins inside the membrane in the absence of apoptotic stimuli. Bcl-2 protein transmembrane domains specifically homooligomerize and heterooligomerize in bacterial and mitochondrial membranes. Thei…

0301 basic medicineMultidisciplinary030102 biochemistry & molecular biologyChemistryApoptosis RegulatorapoptosisBiological membraneBiological SciencesBioinformaticsBiotecnologiaOuter mitochondrial membraneoligomerizationtransmembraneCell biologymitochondria03 medical and health sciencesTransmembrane domain030104 developmental biologyMembraneMembranes (Biologia)ApoptosisBcl-2ProteïnesProceedings of the National Academy of Sciences
researchProduct

Mcl-1 and Bok transmembrane domains : Unexpected players in the modulation of apoptosis

2020

The Bcl-2 protein family comprises both proand antiapoptotic members that control the permeabilization of the mitochondrial outer membrane, a crucial step in the modulation of apoptosis. Recent research has demonstrated that the carboxyl-terminal transmembrane domain (TMD) of some Bcl-2 protein family mem-bers can modulate apoptosis; however, the transmembrane interactome of the antiapoptotic protein Mcl-1 remains largely unexplored. Here, we demonstrate that the Mcl-1 TMD forms homooligomers in the mitochondrial membrane, competes with full-length Mcl-1 protein with regards to its antiapoptotic function, and induces cell death in a Bok-dependent manner. While the Bok TMD oligomers locate p…

0301 basic medicineProtein familyMitochondrionBCL-X(L)Endoplasmic ReticulumInteractome114 Physical sciences03 medical and health sciencesBok0302 clinical medicineProtein DomainsMITOCHONDRIAhemic and lymphatic diseasesAnimalsHumansBcl-2Inner mitochondrial membraneMultidisciplinaryCell DeathChemistryEndoplasmic reticulumapoptosisMcl-1PATHWAYSLOCALIZATIONBiological SciencesTransmembrane protein3. Good healthCell biologytransmembraneTransmembrane domainstomatognathic diseasesGLYCOPHORIN-A DIMERIZATION030104 developmental biologyHELIX PACKINGProto-Oncogene Proteins c-bcl-2BAX030220 oncology & carcinogenesisMitochondrial MembranesPROSURVIVAL BCL-2 PROTEINSMOTIFSURVIVALMyeloid Cell Leukemia Sequence 1 Protein1182 Biochemistry cell and molecular biologyBacterial outer membraneHeLa Cells
researchProduct

Peptides Derived from the Transmembrane Domain of Bcl-2 Proteins as Potential Mitochondrial Priming Tools

2014

The Bcl-2 family of proteins is crucial for apoptosis regulation. Members of this family insert through a specific C-terminal anchoring trans membrane domain (TMD) in the mitochondrial outer membrane where they hierarchically interact to determine cell fate. While the mitochondrial membrane has been proposed to actively participate in these protein protein interactions, the influence of the TMD in the membrane-mediated interaction is poorly understood. Synthetic peptides (TMD-pepts) corresponding to the putative TMD of antiapoptotic (Bcl-2, Bcl-xL, Bcl-w, and Mcl-1) and pro-apoptotic (Bax, Bak) members were synthesized and characterized. TMD-pepts bound more efficiently to mitochondria-like…

Protein ConformationMolecular Sequence DataCell fate determinationBiochemistryHumansCell LineageAmino Acid SequenceInner mitochondrial membranebiologyChemistryCircular DichroismCytochrome cGeneral MedicineMolecular biologyMitochondriaCell biologystomatognathic diseasesTransmembrane domainMembraneProto-Oncogene Proteins c-bcl-2Cell cultureApoptosisbiology.proteinMolecular MedicinePeptidesBacterial outer membranehuman activitiesHeLa Cells
researchProduct

Differences in the Association of BH3-Only Proteins to Biological Membranes

2017

Apoptosis, a prevalent mechanism of programmed cell death, is regulated by the Bcl-2 protein family. The balance between pro- and anti-apoptotic Bcl-2 members in the mitochondrial outer membrane (MOM) protects or triggers MOM permeabilization. Bcl-2 homology-3 (BH3)-only proteins participate in this process activating pro-apoptotic effectors and promoting permeabilization of the MOM. The membrane association of BH3-only proteins is controversial due to the lack of a canonical carboxyl-terminal (C-terminal) transmembrane (TM) domain. We used an in vitro transcription/translation system to study the insertion capacity of these hydrophobic C-terminal regions of the BH3-members Bik, Bim, Noxa, …

MembraneProtein familyProtein-fragment complementation assayBcl-2 familyBiophysicsBiological membraneBiologyBacterial outer membraneTransmembrane proteinCell biologyGreen fluorescent proteinBiophysical Journal
researchProduct