0000000000286735

AUTHOR

K. Schinarakis

Calibration and survey of AMANDA with the SPASE detectors

We report on the analysis of air showers observed in coincidence by the Antarctic Muon and Neutrino detector array (AMANDA-B10) and the South Pole Air Shower Experiment (SPASE-1 and SPASE-2). We discuss the use of coincident events for calibration and survey of the deep AMANDA detector as well as the response of AMANDA to muon bundles. This analysis uses data taken during 1997 when both SPASE-1 and SPASE-2 were in operation to provide a stereo view of AMANDA. © 2003 Elsevier B.V. All rights reserved.

research product

Results from the AMANDA telescope

We present results from the AMANDA high energy neutrino telescope located at the South Pole. They include measurements of the atmospheric neutrino flux, search for UHE point sources, and diffuse sources producing electromagnetic/hadronic showers at the detector or close to it.

research product

Search for extraterrestrial point sources of high energy neutrinos with AMANDA-II using data collected in 2000-2002

The results of a search for point sources of high energy neutrinos in the northern hemisphere using data collected by AMANDA-II in the years 2000, 2001 and 2002 are presented. In particular, a comparison with the single-year result previously published shows that the sensitivity was improved by a factor of 2.2. The muon neutrino flux upper limits on selected candidate sources, corresponding to an E^{-2} neutrino energy spectrum, are included. Sky grids were used to search for possible excesses above the background of cosmic ray induced atmospheric neutrinos. This search reveals no statistically significant excess for the three years considered.

research product

Search for Neutrino-Induced Cascades with AMANDA

We report on a search for electro-magnetic and/or hadronic showers (cascades) induced by high energy neutrinos in the data collected with the AMANDA II detector during the year 2000. The observed event rates are consistent with the expectations for atmospheric neutrinos and muons. We place upper limits on a diffuse flux of extraterrestrial electron, tau and muon neutrinos. A flux of neutrinos with a spectrum $\Phi \propto E^{-2}$ which consists of an equal mix of all flavors, is limited to $E^2 \Phi(E)=8.6 x 10^{-7} GeV/(cm^{2} s sr)$ at a 90% confidence level for a neutrino energy range 50 TeV to 5 PeV. We present bounds for specific extraterrestrial neutrino flux predictions. Several of t…

research product

Flux limits on ultra high energy neutrinos with AMANDA-B10

Abstract Data taken during 1997 with the AMANDA-B10 detector are searched for a diffuse flux of neutrinos of all flavors with energies above 10 16  eV. At these energies the Earth is opaque to neutrinos, and thus neutrino induced events are concentrated at the horizon. The background are large muon bundles from down-going atmospheric air shower events. No excess events above the background expectation are observed and a neutrino flux following E −2 , with an equal mix of all flavors, is limited to E 2 Φ (10 15  eV  E 18  eV) ⩽ 0.99 × 10 −6  GeV cm −2  s −1  sr −1 at 90% confidence level. This is the most restrictive experimental bound placed by any neutrino detector at these energies. Bound…

research product

Search for Extraterrestrial Point Sources of Neutrinos with AMANDA-II

We present the results of a search for point sources of high energy neutrinos in the northern hemisphere using AMANDA-II data collected in the year 2000. Included are flux limits on several AGN blazars, microquasars, magnetars and other candidate neutrino sources. A search for excesses above a random background of cosmic-ray-induced atmospheric neutrinos and misreconstructed downgoing cosmic-ray muons reveals no statistically significant neutrino point sources. We show that AMANDA-II has achieved the sensitivity required to probe known TeV gamma-ray sources such as the blazar Markarian 501 in its 1997 flaring state at a level where neutrino and gamma-ray fluxes are equal.

research product

NEUTRINO ASTRONOMY AND COSMIC RAYS AT THE SOUTH POLE: LATEST RESULTS FROM AMANDA AND PERSPECTIVES FOR ICECUBE

The AMANDA neutrino telescope has been in operation at the South Pole since 1996. The present final array configuration, operational since 2000, consists of 677 photomultiplier tubes arranged in 19 strings, buried at depths between 1500 and 2000 m in the ice. The most recent results on a multi-year search for point sources of neutrinos will be shown. The study of events triggered in coincidence with the surface array SPASE and AMANDA provided a result on cosmic ray composition. Expected improvements from IceCube/IceTop will also be discussed.

research product

Sensitivity of the IceCube detector to astrophysical sources of high energy muon neutrinos

We present the results of a Monte-Carlo study of the sensitivity of the planned IceCube detector to predicted fluxes of muon neutrinos at TeV to PeV energies. A complete simulation of the detector and data analysis is used to study the detector's capability to search for muon neutrinos from sources such as active galaxies and gamma-ray bursts. We study the effective area and the angular resolution of the detector as a function of muon energy and angle of incidence. We present detailed calculations of the sensitivity of the detector to both diffuse and pointlike neutrino emissions, including an assessment of the sensitivity to neutrinos detected in coincidence with gamma-ray burst observatio…

research product

Measurement of the cosmic ray composition at the knee with the SPASE-2/AMANDA-B10 detectors

The mass composition of high-energy cosmic rays at energies above 1015 eV can provide crucial information for the understanding of their origin. Air showers were measured simultaneously with the SPASE-2 air shower array and the AMANDA-B10 Cherenkov telescope at the South Pole. This combination has the advantage to sample almost all high-energy shower muons and is thus a new approach to the determination of the cosmic ray composition. The change in the cosmic ray mass composition was measured versus existing data from direct measurements at low energies. Our data show an increase of the mean log atomic mass 〈lnA〉 by about 0.8 between 500 TeV and 5 PeV. This trend of an increasing mass throug…

research product

Limits on diffuse fluxes of high energy extraterrestrial neutrinos with the AMANDA-B10 detector

Data from the AMANDA-B10 detector taken during the austral winter of 1997 have been searched for a diffuse flux of high energy extraterrestrial muon-neutrinos, as predicted from, e.g., the sum of all active galaxies in the universe. This search yielded no excess events above those expected from the background atmospheric neutrinos, leading to upper limits on the extraterrestrial neutrino flux. For an assumed E^-2 spectrum, a 90% classical confidence level upper limit has been placed at a level E^2 Phi(E) = 8.4 x 10^-7 GeV cm^-2 s^-1 sr^-1 (for a predominant neutrino energy range 6-1000 TeV) which is the most restrictive bound placed by any neutrino detector. When specific predicted spectral…

research product

Results from the AMANDA neutrino telescope

The Amanda neutrino telescope at the South Pole has been taking data since 1996. Stepwise upgraded, it reached its final stage in January 2000. We present results from the search for extraterrestrial neutrinos, neutrinos from dark matter annihilation and magnetic monopoles.

research product

IceCube: A multipurpose neutrino telescope

IceCube is a new high-energy neutrino telescope which will be coming online in the near future. IceCube will be capable of measuring fluxes of all three flavors of neutrino, and its peak neutrino energy sensitivity will be in the TeV–PeV range. Here, after a brief description of the detector, we describe its anticipated performance with a selection of physics topics: supernovae, extraterrestrial diffuse and point sources of neutrinos, gamma-ray bursts, neutrinos from WIMP annihilation, and cosmic ray composition.

research product

Muon track reconstruction and data selection techniques in AMANDA

The Antarctic Muon And Neutrino Detector Array (AMANDA) is a high-energy neutrino telescope operating at the geographic South Pole. It is a lattice of photo-multiplier tubes buried deep in the polar ice between 1500m and 2000m. The primary goal of this detector is to discover astrophysical sources of high energy neutrinos. A high-energy muon neutrino coming through the earth from the Northern Hemisphere can be identified by the secondary muon moving upward through the detector. The muon tracks are reconstructed with a maximum likelihood method. It models the arrival times and amplitudes of Cherenkov photons registered by the photo-multipliers. This paper describes the different methods of r…

research product

Status of the IceCube Neutrino Observatory

Abstract The IceCube neutrino telescope, to be constructed near the Antarctic South Pole, represents the next generation of neutrino telescope. Its large 1 km3 size will make it uniquely sensitive to the detection of neutrinos from astrophysical sources. The current design of the detector is presented. The basic performance of the detector and its ability to search for neutrinos from various astrophysical sources has been studied using detailed simulations and is discussed.

research product