0000000000286781

AUTHOR

M. Bongrand

showing 17 related works from this author

Measurement of the double-βdecay half-life ofNd150and search for neutrinoless decay modes with the NEMO-3 detector

2009

The half-life for double-{beta} decay of {sup 150}Nd has been measured by the NEMO-3 experiment at the Modane Underground Laboratory. Using 924.7 days of data recorded with 36.55 g of {sup 150}Nd, we measured the half-life for 2{nu}{beta}{beta} decay to be T{sub 1/2}{sup 2{nu}}=(9.11{sub -0.22}{sup +0.25}(stat.){+-}0.63(syst.))x10{sup 18} yr. The observed limit on the half-life for neutrinoless double-{beta} decay is found to be T{sub 1/2}{sup 0{nu}}>1.8x10{sup 22} yr at 90% confidence level. This translates into a limit on the effective Majorana neutrino mass of <4.0-6.3 eV if the nuclear deformation is taken into account. We also set limits on models involving Majoron emission, right-hand…

PhysicsNuclear and High Energy PhysicsParticle physics010308 nuclear & particles physicsElementary particle7. Clean energy01 natural sciencesBeta decayNuclear physicsMAJORANADouble beta decay0103 physical sciencesNeutrino010306 general physicsRadioactive decayMajoronLeptonPhysical Review C
researchProduct

Measurement of the background in the NEMO 3 double beta decay experiment

2009

In the double beta decay experiment NEMO 3 a precise knowledge of the background in the signal region is of outstanding importance. This article presents the methods used in NEMO 3 to evaluate the backgrounds resulting from most if not all possible origins. It also illustrates the power of the combined tracking-calorimetry technique used in the experiment.

Nuclear and High Energy Physicscongenital hereditary and neonatal diseases and abnormalitiesSignal regionchemistry.chemical_elementFOS: Physical sciencesRadon[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciencesNuclear physicsNEMODouble beta decay0103 physical sciencesNeutrino Ettore Majorana ObservatoryNuclear Experiment (nucl-ex)010306 general physicsskin and connective tissue diseasesLow radioactivityInstrumentationNuclear ExperimentPhysics010308 nuclear & particles physicsDetectorDouble beta decayPower (physics)BackgroundchemistryRadon
researchProduct

Volume IV The DUNE far detector single-phase technology

2020

This document was prepared by the DUNE collaboration using the resources of the Fermi National Accelerator Laboratory (Fermilab), a U.S. Department of Energy, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359. The DUNE collaboration also acknowledges the international, national, and regional funding agencies supporting the institutions who have contributed to completing this Technical Design Report.

Technology530 Physicsmedia_common.quotation_subjectNeutrino oscillations liquid Argon TPC DUNE technical design report single phase LArTPCElectronsFREE-ELECTRONS01 natural sciences7. Clean energy09 Engineering030218 nuclear medicine & medical imagingStandard Model03 medical and health sciencesneutrino0302 clinical medicineLIQUID ARGON0103 physical sciencesGrand Unified TheoryHigh Energy PhysicsAerospace engineeringInstrumentationInstruments & InstrumentationMathematical Physicsmedia_commonPhysicsScience & Technology02 Physical Sciences010308 nuclear & particles physicsbusiness.industryDetectorLıquıd ArgonfreeNuclear & Particles PhysicsSymmetry (physics)UniverseLong baseline neutrino experiment CP violationAntimatterNeutrinobusinessEvent (particle physics)
researchProduct

First results on ProtoDUNE-SP liquid argon time projection chamber performance from a beam test at the CERN Neutrino Platform

2020

The ProtoDUNE-SP detector was constructed and operated on the CERN Neutrino Platform. We thank the CERN management for providing the infrastructure for this experiment and gratefully acknowledge the support of the CERN EP, BE, TE, EN, IT and IPT Departments for NP04/ProtoDUNE-SP. This documentwas prepared by theDUNEcollaboration using the resources of the Fermi National Accelerator Laboratory (Fermilab), a U.S. Department of Energy, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359. This work was supported by CNPq, FAPERJ, FAPEG and FAPESP, Brazil; CFI, IPP and NSERC, Canada; CERN; MSMT, Czech Republi…

TechnologyHIGH-ENERGYPhysics - Instrumentation and DetectorsPhysics::Instrumentation and Detectorsfar detectorbeam transportNoble liquid detectors (scintillation ionization double-phase)Cms Experıment01 natural sciences7. Clean energy09 EngineeringParticle identificationHigh Energy Physics - Experiment030218 nuclear medicine & medical imagingHigh Energy Physics - Experiment (hep-ex)0302 clinical medicineNoble liquid detectors (scintillationDetectors and Experimental TechniquesInstrumentationInstruments & Instrumentationphysics.ins-dettime resolutionMathematical PhysicsPhysics02 Physical SciencesTime projection chamberLarge Hadron ColliderDetectorInstrumentation and Detectors (physics.ins-det)double-phase)Nuclear & Particles PhysicsLIGHTNeutrinoParticle Physics - ExperimentperformanceNoble liquid detectors(scintillation ionization double-phase)noiseCERN LabLarge detector systems for particle and astroparticle physics Noble liquid detectors (scintillation ionization double-phase) Time projection Chambers (TPC)530 Physicsenergy lossTime projection chambersFOS: Physical sciencesParticle detectorNuclear physics03 medical and health sciencesneutrino: deep underground detector0103 physical sciencesionizationDeep Underground Neutrino ExperimentHigh Energy Physics[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]signal processingactivity reportScience & Technology010308 nuclear & particles physicshep-exLarge detector systems for particle and astroparticle physicsTime projection Chambers (TPC)530 Physiksensitivitycalibrationtime projection chamber: liquid argonExperimental High Energy PhysicsLarge detector systems for particle and astroparticle physicsingle-phase)Large detector systems for particle and astroparticle physics; Noble liquid detectors (scintillation ionization double-phase); Time projection Chambers (TPC)High Energy Physics::Experimentphoton: detectorparticle identificationcharged particle: irradiationBeam (structure)
researchProduct

Results of the search for neutrinoless double-βdecay inMo100with the NEMO-3 experiment

2015

The NEMO-3 detector, which had been operating in the Modane Underground Laboratory from 2003 to 2010, was designed to search for neutrinoless double $\beta$ ($0\nu\beta\beta$) decay. We report final results of a search for $0\nu\beta\beta$ decays with $6.914$ kg of $^{100}$Mo using the entire NEMO-3 data set with a detector live time of $4.96$ yr, which corresponds to an exposure of 34.3 kg$\cdot$yr. We perform a detailed study of the expected background in the $0\nu\beta\beta$ signal region and find no evidence of $0\nu\beta\beta$ decays in the data. The level of observed background in the $0\nu\beta\beta$ signal region $[2.8-3.2]$ MeV is $0.44 \pm 0.13$ counts/yr/kg, and no events are obs…

PhysicsNuclear and High Energy PhysicsParticle physics010308 nuclear & particles physicsSignal region01 natural sciencesBeta decayLower limitNuclear physicsMAJORANADouble beta decay0103 physical sciencesUnderground laboratoryBeta (velocity)Neutrino010306 general physicsPhysical Review D
researchProduct

Neutrino interaction classification with a convolutional neural network in the DUNE far detector

2020

The Deep Underground Neutrino Experiment is a next-generation neutrino oscillation experiment that aims to measure CP-violation in the neutrino sector as part of a wider physics program. A deep learning approach based on a convolutional neural network has been developed to provide highly efficient and pure selections of electron neutrino and muon neutrino charged-current interactions. The electron neutrino (antineutrino) selection efficiency peaks at 90% (94%) and exceeds 85% (90%) for reconstructed neutrino energies between 2–5 GeV. The muon neutrino (antineutrino) event selection is found to have a maximum efficiency of 96% (97%) and exceeds 90% (95%) efficiency for reconstructed neutrino…

Neutrino Oscillations. Neutrino detectors.Physics - Instrumentation and DetectorsPhysics::Instrumentation and Detectorsfar detector01 natural sciencesPhysics Particles & FieldsHigh Energy Physics - Experimentcharged currentHigh Energy Physics - Experiment (hep-ex)[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Particle Physics ExperimentsMuon neutrinoneutrino/e: particle identificationNeutrino detectorsDetectors and Experimental Techniquesphysics.ins-detCharged currentneutrino: interactionInformáticaPhysicsTelecomunicacionesNeutrino oscillationsPhysicsNeutrino interactions neural network DUNE Deep Underground Neutrino ExperimentInstrumentation and Detectors (physics.ins-det)Experiment (hep-ex)Neutrino detectorPhysical SciencesCP violationNeutrinoParticle Physics - ExperimentParticle physicsdata analysis method530 Physicsneural networkAstrophysics::High Energy Astrophysical PhenomenaCONSERVATIONFOS: Physical sciencesAstronomy & AstrophysicsDeep Learningneutrino: deep underground detectorneutrino physics0103 physical sciencesNeutrino Oscillations. Neutrino detectorsObject DetectionNeutrinoCP: violationDeep Underground Neutrino ExperimentHigh Energy Physics[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Neutrinos010306 general physicsNeutrino oscillationneutrino/mu: particle identificationIOUScience & TechnologyDUNENeutrino interactions010308 nuclear & particles physicshep-exHigh Energy Physics::PhenomenologyFísicaNeutrino InteractionDetector530 PhysiksensitivityefficiencyHigh Energy Physics::ExperimentElectron neutrino
researchProduct

Spectral modeling of scintillator for the NEMO-3 and SuperNEMO detectors

2010

We have constructed a GEANT4-based detailed software model of photon transport in plastic scintillator blocks and have used it to study the NEMO-3 and SuperNEMO calorimeters employed in experiments designed to search for neutrinoless double beta decay. We compare our simulations to measurements using conversion electrons from a calibration source of $\rm ^{207}Bi$ and show that the agreement is improved if wavelength-dependent properties of the calorimeter are taken into account. In this article, we briefly describe our modeling approach and results of our studies.

Nuclear and High Energy PhysicsPhotomultiplierTechnologyPhysics - Instrumentation and DetectorsPhotonPhysics::Instrumentation and DetectorsCODEFOS: Physical sciencesScintillator01 natural sciencesHigh Energy Physics - ExperimentPhysics Particles & FieldsNuclear physicsHigh Energy Physics - Experiment (hep-ex)Photomultiplier0202 Atomic Molecular Nuclear Particle And Plasma PhysicsDouble beta decay0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]CalibrationPlastic scintillators[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsNuclear Science & TechnologyInstrumentationInstruments & InstrumentationScintillationphysics.ins-detPhysicsScintillationScience & Technology010308 nuclear & particles physicshep-exPhysicsMO-100DetectorInstrumentation and Detectors (physics.ins-det)Double beta decayNuclear & Particles PhysicsCalorimeterPhysics NuclearPhysical SciencesGEANT 4DOUBLE-BETA DECAYOptical photon transport
researchProduct

Measurement of the two neutrino double beta decay half-life of Zr-96 with the NEMO-3 detector

2010

Using 9.4 g of Zr-96 and 1221 days of data from the NEMO-3 detector corresponding to 0.031 kg yr, the obtained 2vbb decay half-life measurement is [2.35 +/- 0.14(stat) +/- 0.16(syst)] x 10^19 yr. Different characteristics of the final state electrons have been studied, such as the energy sum, individual electron energy, and angular distribution. The 2v nuclear matrix element is extracted using the measured 2vbb half-life and is 0.049 +/- 0.002. Constraints on 0vbb decay have also been set.

PhysicsNuclear and High Energy PhysicsIsotope010308 nuclear & particles physicsDetectorFOS: Physical sciencesHalf-lifeElectron[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]7. Clean energy01 natural sciencesNuclear physicsRadioactivityAngular distributionDouble beta decay0103 physical sciencesNuclear Experiment (nucl-ex)Neutrino010306 general physicsNuclear ExperimentEnergy (signal processing)
researchProduct

Volume I. Introduction to DUNE

2020

Journal of Instrumentation 15(08), T08008 (1-228) (2020). doi:10.1088/1748-0221/15/08/T08008

detector: technologydeep underground detector [neutrino]530 PhysicsPhysics::Instrumentation and DetectorsData managementmedia_common.quotation_subjectfar detector610Long baseline neutrino experiment CP violation01 natural sciences030218 nuclear medicine & medical imagingNeutrino oscillations. Neutrino Detectors. CP violation. Matter stabilitydesign [detector]03 medical and health sciencesneutrinoneutrino: deep underground detector0302 clinical medicinenear detector0103 physical sciencesDeep Underground Neutrino Experimentddc:610Neutrino oscillationInstrumentationdetector: designMathematical Physicsactivity reportmedia_common010308 nuclear & particles physicsbusiness.industryNeutrino oscillations. Neutrino Detectors. CP violation. Matter stability.DetectorVolume (computing)Modular designtime projection chamber: liquid argonUniversetechnology [detector]liquid argon [time projection chamber]Systems engineeringHigh Energy Physics::ExperimentNeutrino oscillations DUNE technical design report executive summary detector technologiesdata managementNeutrinobusiness
researchProduct

Measurement of theββDecay Half-Life ofTe130with the NEMO-3 Detector

2011

This Letter reports results from the NEMO-3 experiment based on an exposure of 1275 days with 661g of 130Te in the form of enriched and natural tellurium foils. With this data set the double beta decay rate of 130Te is found to be non-zero with a significance of 7.7 standard deviations and the half-life is measured to be T1/2 = (7.0 +/- 0.9(stat) +/- 1.1(syst)) x 10^{20} yr. This represents the most precise measurement of this half-life yet published and the first real-time observation of this decay.

PhysicsIsotope010308 nuclear & particles physicsStable isotope ratioGeneral Physics and AstronomyHalf-lifechemistry.chemical_element01 natural sciencesBeta decayNuclear physicschemistryDouble beta decay0103 physical sciencesNeutrino Ettore Majorana Observatory010306 general physicsTelluriumRadioactive decayPhysical Review Letters
researchProduct

Detailed studies of $^{100}$Mo two-neutrino double beta decay in NEMO-3

2019

The full data set of the NEMO-3 experiment has been used to measure the half-life of the two-neutrino double beta decay of $^{100}$Mo to the ground state of $^{100}$Ru, $T_{1/2} = \left[ 6.81 \pm 0.01\,\left(\mbox{stat}\right) ^{+0.38}_{-0.40}\,\left(\mbox{syst}\right) \right] \times10^{18}$ y. The two-electron energy sum, single electron energy spectra and distribution of the angle between the electrons are presented with an unprecedented statistics of $5\times10^5$ events and a signal-to-background ratio of ~80. Clear evidence for the Single State Dominance model is found for this nuclear transition. Limits on Majoron emitting neutrinoless double beta decay modes with spectral indices of …

Particle physicsS029MTPhysics and Astronomy (miscellaneous)FOS: Physical sciencesElementary particle[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]nucl-exinvariance: Lorentz01 natural sciences7. Clean energyneutrinoless double beta decaydecay modesPhysics Particles & Fieldsdouble-beta decay: (0neutrino)SEARCHDouble beta decay0103 physical sciencesground stateNuclear Experiment (nucl-ex)010306 general physics0206 Quantum PhysicsEngineering (miscellaneous)Nuclear ExperimentMajoronS076H2NPhysicsScience & TechnologyHALF-LIFE010308 nuclear & particles physicsPhysicsMO-100High Energy Physics::PhenomenologyNuclear & Particles PhysicsMajoronviolation: Lorentznucleus: transitionSTATESstatisticsPhysical Sciences0202 Atomic Molecular Nuclear Particle and Plasma Physicsspectralelectron: energy spectrumHigh Energy Physics::ExperimentNeutrinoGround stateEnergy (signal processing)Radioactive decayLepton
researchProduct

Volume III. DUNE far detector technical coordination

2020

The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay-these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the st…

Technology530 PhysicsPhysics::Instrumentation and Detectorsmedia_common.quotation_subjectContext (language use)01 natural sciences09 Engineering030218 nuclear medicine & medical imagingneutrino03 medical and health sciences0302 clinical medicine0103 physical sciencesGrand Unified TheoryDeep Underground Neutrino ExperimentHigh Energy PhysicsInstruments & InstrumentationNeutrino oscillations liquid Argon TPC technical design report technical coordinationInstrumentationMathematical Physicsmedia_commonScience & Technology02 Physical Sciences010308 nuclear & particles physicsDetectorVolume (computing)530 PhysikNuclear & Particles PhysicsUniverseSystems engineeringHigh Energy Physics::ExperimentState (computer science)NeutrinoLong baseline neutrino experiment CP violationJournal of Instrumentation
researchProduct

Search for neutrinoless double-beta decay ofMo100with the NEMO-3 detector

2014

We report the results of a search for the neutrinoless double-$\beta$ decay (0$\nu\beta\beta$) of $^{100}$Mo, using the NEMO-3 detector to reconstruct the full topology of the final state events. With an exposure of 34.7 kg.y, no evidence for the 0$\nu\beta\beta$ signal has been found, yielding a limit for the light Majorana neutrino mass mechanism of $T_{1/2}(0\nu\beta\beta)>1.1 \times 10^{24}$ years (90% C.L.) once both statistical and systematic uncertainties are taken into account. Depending on the Nuclear Matrix Elements this corresponds to an upper limit on the Majorana effective neutrino mass of $ < 0.3-0.8$ eV (90% C.L.). Constraints on other lepton number violating mechanisms of 0$…

PhysicsNuclear and High Energy PhysicsParticle physics010308 nuclear & particles physicsElectron01 natural sciencesBeta decayLepton numberNuclear physicsMAJORANADouble beta decay0103 physical sciencesBeta (velocity)Neutrino010306 general physicsEnergy (signal processing)Physical Review D
researchProduct

Feasibility and physics potential of detecting $^8$B solar neutrinos at JUNO

2021

The Jiangmen Underground Neutrino Observatory (JUNO) features a 20 kt multi-purpose underground liquid scintillator sphere as its main detector. Some of JUNO's features make it an excellent location for 8B solar neutrino measurements, such as its low-energy threshold, high energy resolution compared with water Cherenkov detectors, and much larger target mass compared with previous liquid scintillator detectors. In this paper, we present a comprehensive assessment of JUNO's potential for detecting 8B solar neutrinos via the neutrino-electron elastic scattering process. A reduced 2 MeV threshold for the recoil electron energy is found to be achievable, assuming that the intrinsic radioactive …

Physics - Instrumentation and Detectorsneutrino: solarPhysics::Instrumentation and DetectorsSolar neutrinoscintillation counter: liquidhigh [energy resolution]01 natural sciences7. Clean energymass [target]High Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)JUNO; Neutrino oscillation; Solar neutrinoelastic scattering [neutrino electron]KamLAND[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]flavor [transformation]neutrino oscillationInstrumentationJiangmen Underground Neutrino ObservatoryPhysicsElastic scatteringJUNOliquid [scintillation counter]neutrino oscillation solar neutrino JUNOSettore FIS/01 - Fisica Sperimentaleoscillation [neutrino]Instrumentation and Detectors (physics.ins-det)Monte Carlo [numerical calculations]neutrino electron: elastic scatteringtensionmass difference [neutrino]ddc:nuclear reactor [antineutrino]observatoryHigh Energy Physics - PhenomenologyPhysics::Space Physicsneutrino: flavorsolar [neutrino]target: massNeutrinonumerical calculations: Monte CarloNuclear and High Energy PhysicsParticle physicsNeutrino oscillationmatter: solarCherenkov counter: waterneutrino: mass differenceFOS: Physical sciencesSolar neutrinoNOtransformation: flavoruraniumPE2_20103 physical scienceselectron: recoil: energyantineutrino: nuclear reactorsolar [matter]ddc:530ddc:610Sensitivity (control systems)[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsNeutrino oscillationbackground: radioactivityCherenkov radiationAstrophysiquesolar neutrino010308 nuclear & particles physicswater [Cherenkov counter]radioactivity [background]flavor [neutrino]Astronomy and Astrophysicssensitivityneutrino: mixing anglerecoil: energy [electron]energy spectrum [electron]electron: energy spectrumHigh Energy Physics::Experimentsphereneutrino: oscillationenergy resolution: highEnergy (signal processing)mixing angle [neutrino]
researchProduct

Final results on $${}^\mathbf{82 }{\hbox {Se}}$$ 82Se double beta decay to the ground state of $${}^\mathbf{82 }{\hbox {Kr}}$$ 82Kr from the NEMO-3 e…

2018

Using data from the NEMO-3 experiment, we have measured the two-neutrino double beta decay ($$2\nu \beta \beta $$ 2νββ ) half-life of $$^{82}$$ 82 Se as $$T_{\smash {1/2}}^{2\nu } \!=\! \left[ 9.39 \pm 0.17\left( \text{ stat }\right) \pm 0.58\left( \text{ syst }\right) \right] \times 10^{19}$$ T1/22ν=9.39±0.17stat±0.58syst×1019 y under the single-state dominance hypothesis for this nuclear transition. The corresponding nuclear matrix element is $$\left| M^{2\nu }\right| = 0.0498 \pm 0.0016$$ M2ν=0.0498±0.0016 . In addition, a search for neutrinoless double beta decay ($$0\nu \beta \beta $$ 0νββ ) using 0.93 kg of $$^{82}$$ 82 Se observed for a total of 5.25 y has been conducted and no evide…

European Physical Journal
researchProduct

Detailed studies of $$^{100}$$ 100 Mo two-neutrino double beta decay in NEMO-3

2019

The full data set of the NEMO-3 experiment has been used to measure the half-life of the two-neutrino double beta decay of $$^{100}$$ 100 Mo to the ground state of $$^{100}$$ 100 Ru, $$T_{1/2} = \left[ 6.81 \pm 0.01\,\left( \text{ stat }\right) ^{+0.38}_{-0.40}\,\left( \text{ syst }\right) \right] \times 10^{18}$$ T1/2=6.81±0.01stat-0.40+0.38syst×1018 year. The two-electron energy sum, single electron energy spectra and distribution of the angle between the electrons are presented with an unprecedented statistics of $$5\times 10^5$$ 5×105 events and a signal-to-background ratio of $$\sim $$ ∼ 80. Clear evidence for the Single State Dominance model is found for this nuclear transition. Limit…

European Physical Journal
researchProduct

Combined sensitivity to the neutrino mass ordering with JUNO, the IceCube Upgrade, and PINGU

2020

Physical review / D 101(3), 032006 (1-19) (2020). doi:10.1103/PhysRevD.101.032006

Physics - Instrumentation and DetectorsPhysics::Instrumentation and Detectorsantineutrino/e: energy spectrumJoint analysishiukkasfysiikka7. Clean energy01 natural sciencesString (physics)PINGUHigh Energy Physics - ExperimentSubatomär fysikHigh Energy Physics - Experiment (hep-ex)neutrino: atmosphereSubatomic Physics[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Particle Physics Experimentsneutrino: massphysics.ins-detPhysicsJUNOPhysicsneutriinotoscillation [neutrino]Instrumentation and Detectors (physics.ins-det)massa (fysiikka)atmosphere [neutrino]tensionneutrino: nuclear reactormass difference [neutrino]ddc:UpgradePhysique des particules élémentairesnuclear reactor [neutrino]proposed experimentNeutrinoperformanceParticle physicsAstrophysics::High Energy Astrophysical Phenomenaneutrino: mass differenceFOS: Physical sciencesddc:500.25300103 physical sciencesEnergy spectrumIceCube: upgradeOSCILLATIONSddc:530Sensitivity (control systems)[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsNeutrino oscillationenergy spectrum [antineutrino/e]hep-ex010308 nuclear & particles physicssensitivityPhysics and Astronomymass [neutrino]stringupgrade [IceCube]High Energy Physics::ExperimentReactor neutrinoneutrino: oscillationMATTER
researchProduct