6533b7d6fe1ef96bd1267050
RESEARCH PRODUCT
Feasibility and physics potential of detecting $^8$B solar neutrinos at JUNO
J. ZhaoA. AbuslemeT. AdamS. AhmadR. AhmedS. AielloM. AkramF. AnQ. AnG. AndronicoN. AnfimovV. AntonelliT. AntoshkinaB. AsavapibhopJ. P. A. M. AndréD. AugusteA. BabicN. BalashovW. BaldiniA. BarresiD. BasilicoE. BaussanM. BellatoA. BergnoliT. BirkenfeldS. BlinD. BlumS. BlythA. BolshakovaM. BongrandC. BordereauD. BretonA. BrigattiR. BrugneraR. BrunoA. BudanoM. BuscemiJ. BustoI. ButorovA. CabreraH. CaiX. CaiY. CaiZ. CaiR. CallegariA. CammiA. CampenyC. CaoG. CaoJ. CaoR. CarusoC. CernaJ. ChangY. ChangP. ChenP. -A ChenS. ChenX. ChenY. -W ChenY. ChenY. ChenZ. ChenJ. ChengY. ChengA. ChetverikovD. ChiesaP. ChimentiA. ChukanovG. ClaverieC. ClementiB. ClerbauxS. C. Di LorenzoD. CortiF. Dal CorsoO. DalagerC. La TailleJ. DengZ. DengZ. DengW. DepneringM. DiazX. DingY. DingB. DirgantaraS. DmitrievskyT. DohnalD. DolzhikovG. DonchenkoJ. DongE. DoroshkevichM. DracosF. DruilloleR. DuS. DuS. DusiniM. DvorakT. EnqvistH. EnzmannA. FabbriL. FajtD. FanL. FanJ. FangW. FangM. FargettaD. FedoseevV. FeketeL. -C FengQ. FengR. FordA. FournierH. GanF. GaoA. GarfagniniA. GavrikovM. GiammarchiA. GiazN. GiudiceM. GoncharG. GongH. GongY. GornushkinA. GöttelM. GrassiC. GrewingV. GromovM. GuX. GuY. GuM. GuanN. GuardoneM. GulC. GuoJ. GuoW. GuoX. GuoY. GuoP. HackspacherC. HagnerR. HanY. HanM. S. HassanM. HeW. HeT. HeinzP. HellmuthY. HengR. HerreraY. HorS. HouY. HsiungB. -Z HuH. HuJ. HuJ. HuS. HuT. HuZ. HuC. HuangG. HuangH. HuangW. HuangX. HuangX. HuangY. HuangJ. HuiL. HuoW. HuoC. HussS. HussainA. IoannisianR. IsocrateB. JelminiK. -L JenI. JeriaX. JiX. JiH. JiaJ. JiaS. JianD. JiangW. JiangX. JiangR. JinX. JingC. JolletJ. JoutsenvaaraS. JungthawanL. KalousisP. KampmannL. KangR. KaraparambilN. KazarianK. KhosonthongkeeD. KorablevK. KouzakovA. KrasnoperovA. KruthN. KutovskiyP. KuusiniemiT. LachenmaierC. LandiniS. LeblancV. LebrinF. LefevreR. LeiR. LeitnerJ. LeungD. LiF. LiF. LiH. LiH. LiJ. LiM. LiM. LiN. LiZ. ZhuQ. LiR. LiS. LiT. LiW. LiW. LiX. LiX. LiX. LiY. LiY. LiZ. LiZ. LiZ. LiH. LiangB. ZhuangJ. LiaoD. LiebauA. LimphiratS. LimpijumnongG. -L LinS. LinT. LinJ. LingI. LippiF. LiuH. LiuH. LiuH. LiuH. LiuH. LiuJ. LiuJ. LiuM. LiuQ. LiuQ. LiuR. LiuS. LiuS. LiuS. LiuX. LiuX. LiuY. LiuY. LiuA. LokhovP. LombardiC. LombardoK. LooC. LuH. LuJ. LuJ. LuS. LuX. LuB. LubsandorzhievS. LubsandorzhievL. LudhovaA. LukanovF. LuoG. LuoP. LuoS. LuoW. LuoV. LyashukB. MaQ. MaS. MaX. MaX. MaJ. MaalmiY. MalyshkinR. C. MandujanoF. MantovaniF. ManzaliX. MaoY. MaoS. M. MariF. MariniS. MariumC. MartelliniG. Martin-chassardA. MartiniM. MayerD. MayilyanI. MednieksY. MengA. MeregagliaE. MeroniD. MeyhöferM. MezzettoJ. MillerL. MiramontiP. MontiniM. MontuschiA. MüllerM. NastasiD. V. NaumovE. NaumovaD. Navas-nicolasI. NemchenokM. T. N. ThiF. NingZ. NingH. NunokawaL. OberauerJ. P. Ochoa-ricouxA. OlshevskiyD. OrestanoF. OrticaR. OthegravenH. -R PanA. PaoloniS. ParmeggianoY. PeiN. PellicciaA. PengH. PengF. PerrotP. -A PetitjeanF. PetrucciO. PilarczykL. F. P. RicoA. PopovP. PoussotW. PratumwanE. PrevitaliF. QiM. QiS. QianX. QianZ. QianH. QiaoZ. QinS. QiuM. U. RajputG. RanucciN. RaperA. ReH. RebberA. RebiiB. RenJ. RenB. RicciM. RobensM. RocheN. RodphaiA. RomaniB. RoskovecC. RothX. RuanX. RuanS. RujirawatA. RybnikovAndrei SadovskiyP. SaggeseS. SanfilippoA. SangkaN. SanguansakU. SawangwitJ. SawatzkiF. SawyM. ScheverC. SchwabK. SchweizerA. SelyuninA. SerafiniG. SettantaM. SettimoZ. ShaoV. SharovA. ShaydurovaJ. ShiY. ShiV. ShutovA. SidorenkovF. ŠimkovicC. SirignanoJ. SiripakM. SistiM. SlupeckiM. SmirnovO. SmirnovT. Sogo-bezerraS. SokolovJ. SongwadhanaB. SoonthornthumA. SotnikovO. ŠrámekW. SreethawongA. StahlL. StancoK. StankevichD. ŠtefánikH. SteigerJ. SteinmannT. SterrM. R. StockV. StratiA. StudenikinS. SunX. SunY. SunY. SunN. SuwonjandeeM. SzelezniakJ. TangQ. TangQ. TangX. TangA. TietzschI. TkachevT. TmejM. D. C. TorriK. TreskovA. TriossiG. TroniW. TrzaskaC. TuveN. UshakovJ. Den BoomS. WaasenG. VanroyenV. VedinG. VerdeM. VialkovB. ViaudM. VollbrechtC. VolpeV. VorobelD. VoroninL. VotanoP. WalkerC. WangC. -H WangE. WangG. WangJ. WangJ. WangK. WangL. WangM. WangM. WangL. ZongR. WangS. WangW. WangJ. ZouW. WangX. WangX. WangY. WangY. WangY. WangH. ZhuangY. WangY. WangY. WangZ. WangZ. WangZ. WangZ. WangM. WaqasA. WatcharangkoolL. WeiW. WeiW. WeiY. WeiK. WenL. WenC. WiebuschS. C. -F WongB. WonsakD. WuQ. WuZ. WuM. WurmJ. WurtzC. WysotzkiY. XiD. XiaX. XieY. XieZ. XieZ. XingB. XuC. XuD. XuF. XuH. XuJ. XuJ. XuM. XuY. XuY. XuB. YanT. YanW. YanX. YanY. YanA. YangC. YangC. YangH. YangJ. YangL. YangX. YangY. YangK. ZhuH. YaoZ. YasinJ. YeM. YeZ. YeU. YeginF. YermiaP. YiN. YinX. YinZ. YouB. YuC. YuC. YuH. YuM. YuX. YuZ. YuZ. YuC. YuanY. YuanZ. YuanZ. YuanB. YueN. ZafarA. ZambaniniV. ZavadskyiS. ZengT. ZengY. ZengL. ZhanA. ZhangF. ZhangG. ZhangH. ZhangH. ZhangJ. ZhangJ. ZhangJ. ZhangJ. ZhangJ. ZhangP. ZhangQ. ZhangS. ZhangS. ZhangT. ZhangX. ZhangX. ZhangX. ZhangY. ZhangY. ZhangY. ZhangY. ZhangY. ZhangY. ZhangZ. ZhangZ. ZhangF. ZhaoJ. ZhaoR. ZhaoS. ZhaoT. ZhaoD. ZhengH. ZhengM. ZhengY. ZhengW. ZhongJ. ZhouL. ZhouN. ZhouS. ZhouT. ZhouX. ZhouJ. ZhuK. Zhusubject
Physics - Instrumentation and Detectorsneutrino: solarPhysics::Instrumentation and DetectorsSolar neutrinoscintillation counter: liquidhigh [energy resolution]01 natural sciences7. Clean energymass [target]High Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)JUNO; Neutrino oscillation; Solar neutrinoelastic scattering [neutrino electron]KamLAND[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]flavor [transformation]neutrino oscillationInstrumentationJiangmen Underground Neutrino ObservatoryPhysicsElastic scatteringJUNOliquid [scintillation counter]neutrino oscillation solar neutrino JUNOSettore FIS/01 - Fisica Sperimentaleoscillation [neutrino]Instrumentation and Detectors (physics.ins-det)Monte Carlo [numerical calculations]neutrino electron: elastic scatteringtensionmass difference [neutrino]ddc:nuclear reactor [antineutrino]observatoryHigh Energy Physics - PhenomenologyPhysics::Space Physicsneutrino: flavorsolar [neutrino]target: massNeutrinonumerical calculations: Monte CarloNuclear and High Energy PhysicsParticle physicsNeutrino oscillationmatter: solarCherenkov counter: waterneutrino: mass differenceFOS: Physical sciencesSolar neutrinoNOtransformation: flavoruraniumPE2_20103 physical scienceselectron: recoil: energyantineutrino: nuclear reactorsolar [matter]ddc:530ddc:610Sensitivity (control systems)[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsNeutrino oscillationbackground: radioactivityCherenkov radiationAstrophysiquesolar neutrino010308 nuclear & particles physicswater [Cherenkov counter]radioactivity [background]flavor [neutrino]Astronomy and Astrophysicssensitivityneutrino: mixing anglerecoil: energy [electron]energy spectrum [electron]electron: energy spectrumHigh Energy Physics::Experimentsphereneutrino: oscillationenergy resolution: highEnergy (signal processing)mixing angle [neutrino]description
The Jiangmen Underground Neutrino Observatory (JUNO) features a 20 kt multi-purpose underground liquid scintillator sphere as its main detector. Some of JUNO's features make it an excellent location for 8B solar neutrino measurements, such as its low-energy threshold, high energy resolution compared with water Cherenkov detectors, and much larger target mass compared with previous liquid scintillator detectors. In this paper, we present a comprehensive assessment of JUNO's potential for detecting 8B solar neutrinos via the neutrino-electron elastic scattering process. A reduced 2 MeV threshold for the recoil electron energy is found to be achievable, assuming that the intrinsic radioactive background 238U and 232Th in the liquid scintillator can be controlled to 10-17g/g. With ten years of data acquisition, approximately 60,000 signal and 30,000 background events are expected. This large sample will enable an examination of the distortion of the recoil electron spectrum that is dominated by the neutrino flavor transformation in the dense solar matter, which will shed new light on the inconsistency between the measured electron spectra and the predictions of the standard three-flavor neutrino oscillation framework. If Δm221= 4.8 × 10-5(7.5 × 10-5) eV, JUNO can provide evidence of neutrino oscillation in the Earth at approximately the 3σ (2σ) level by measuring the non-zero signal rate variation with respect to the solar zenith angle. Moreover, JUNO can simultaneously measure Δm221using 8B solar neutrinos to a precision of 20% or better, depending on the central value, and to sub-percent precision using reactor antineutrinos. A comparison of these two measurements from the same detector will help understand the current mild inconsistency between the value of Δm221reported by solar neutrino experiments and the KamLAND experiment.
year | journal | country | edition | language |
---|---|---|---|---|
2021-01-01 |