0000000000286773

AUTHOR

A. Barresi

showing 7 related works from this author

Currents Distribution During a Fault in an MV Network: Methods and Measurements

2016

When a single line to ground fault happens on the MV side of a HV/MV system, only a small portion of the fault current is injected into the ground by the ground-grid of the faulty substation. In fact the fault current is distributed between grounding electrodes and MV cables sheaths. In systems with isolated neutral or with resonant earthing this may be sufficient to provide safety from electric shock. Experimental measurements were performed on a real MV distribution network: a real single line to ground fault was made and fault currents were measured in the faulty substation and in four neighboring substations. In this paper the problem of fault current distribution is introduced, the tes…

EngineeringDistribution (number theory)020209 energyGlobal earthing system02 engineering and technologyglobal earthing systemsFault (power engineering)Industrial and Manufacturing EngineeringFault current limiter0202 electrical engineering electronic engineering information engineeringmedicineCurrent distributionElectrical and Electronic EngineeringElectrical conductorsingle line to ground faultglobal earthing systems (GESs)Current distribution electrical safety global earthing systems (GESs) grounding power distribution faults power system faults single line to ground fault (SLGF)business.industryGroundElectric shockElectrical engineeringpower system faultsgroundingmedicine.diseaseGridSingle linecurrent distribution; electrical safety; global earthing systems; grounding; power distribution faults; power system faults; single line to ground fault; control and systems engineering; industrial and manufacturing engineering; electrical and electronic engineeringSettore ING-IND/33 - Sistemi Elettrici Per L'EnergiaSettore ING-IND/31 - ElettrotecnicaPower system faultControl and Systems Engineeringsingle line to ground fault (SLGF)power distribution faultselectrical safetybusinessCurrent distribution; electrical safety; global earthing systems (GESs); grounding; power distribution faults; power system faults; single line to ground fault (SLGF); Control and Systems Engineering; Industrial and Manufacturing Engineering; Electrical and Electronic EngineeringPower distribution fault
researchProduct

Feasibility and physics potential of detecting $^8$B solar neutrinos at JUNO

2021

The Jiangmen Underground Neutrino Observatory (JUNO) features a 20 kt multi-purpose underground liquid scintillator sphere as its main detector. Some of JUNO's features make it an excellent location for 8B solar neutrino measurements, such as its low-energy threshold, high energy resolution compared with water Cherenkov detectors, and much larger target mass compared with previous liquid scintillator detectors. In this paper, we present a comprehensive assessment of JUNO's potential for detecting 8B solar neutrinos via the neutrino-electron elastic scattering process. A reduced 2 MeV threshold for the recoil electron energy is found to be achievable, assuming that the intrinsic radioactive …

Physics - Instrumentation and Detectorsneutrino: solarPhysics::Instrumentation and DetectorsSolar neutrinoscintillation counter: liquidhigh [energy resolution]01 natural sciences7. Clean energymass [target]High Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)JUNO; Neutrino oscillation; Solar neutrinoelastic scattering [neutrino electron]KamLAND[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]flavor [transformation]neutrino oscillationInstrumentationJiangmen Underground Neutrino ObservatoryPhysicsElastic scatteringJUNOliquid [scintillation counter]neutrino oscillation solar neutrino JUNOSettore FIS/01 - Fisica Sperimentaleoscillation [neutrino]Instrumentation and Detectors (physics.ins-det)Monte Carlo [numerical calculations]neutrino electron: elastic scatteringtensionmass difference [neutrino]ddc:nuclear reactor [antineutrino]observatoryHigh Energy Physics - PhenomenologyPhysics::Space Physicsneutrino: flavorsolar [neutrino]target: massNeutrinonumerical calculations: Monte CarloNuclear and High Energy PhysicsParticle physicsNeutrino oscillationmatter: solarCherenkov counter: waterneutrino: mass differenceFOS: Physical sciencesSolar neutrinoNOtransformation: flavoruraniumPE2_20103 physical scienceselectron: recoil: energyantineutrino: nuclear reactorsolar [matter]ddc:530ddc:610Sensitivity (control systems)[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsNeutrino oscillationbackground: radioactivityCherenkov radiationAstrophysiquesolar neutrino010308 nuclear & particles physicswater [Cherenkov counter]radioactivity [background]flavor [neutrino]Astronomy and Astrophysicssensitivityneutrino: mixing anglerecoil: energy [electron]energy spectrum [electron]electron: energy spectrumHigh Energy Physics::Experimentsphereneutrino: oscillationenergy resolution: highEnergy (signal processing)mixing angle [neutrino]
researchProduct

Optimization of the JUNO liquid scintillator composition using a Daya Bay antineutrino detector

2021

To maximize the light yield of the liquid scintillator (LS) for the Jiangmen Underground Neutrino Observatory (JUNO), a 20 t LS sample was produced in a pilot plant at Daya Bay. The optical properties of the new LS in various compositions were studied by replacing the gadolinium-loaded LS in one antineutrino detector. The concentrations of the fluor, PPO, and the wavelength shifter, bis-MSB, were increased in 12 steps from 0.5 g/L and <0.01 mg/L to 4 g/L and 13 mg/L, respectively. The numbers of total detected photoelectrons suggest that, with the optically purified solvent, the bis-MSB concentration does not need to be more than 4 mg/L. To bridge the one order of magnitude in the detect…

organic compounds: admixtureNuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsLiquid scintillatorscintillation counter: liquidAnalytical chemistryFOS: Physical sciencesmodel: opticalScintillatorWavelength shifterantineutrino: detector01 natural sciencesNOHigh Energy Physics - Experimentwavelength shifterHigh Energy Physics - Experiment (hep-ex)PE2_2Daya BayNeutrino0103 physical sciencesfluorine: admixture[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]ddc:530neutrino oscillation[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsInstrumentationJiangmen Underground Neutrino ObservatoryPhysicsJUNO010308 nuclear & particles physicsSettore FIS/01 - Fisica SperimentaleDetectorLight yield; Liquid scintillator; NeutrinoInstrumentation and Detectors (physics.ins-det)Yield (chemistry)Scintillation counterComposition (visual arts)photon: yieldNeutrinoLight yieldNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct

Current and Voltage Behaviour During a Fault in a HV/MV System: Methods and Measurements

2015

When a single line to ground fault happens on the MV side of a HV/MV system, only a small portion of the fault current is injected into the ground by the ground-grid of the faulty substation. In fact the fault current is distributed between grounding electrodes and MV cables sheaths. In systems with isolated neutral or with resonant earthing this may be sufficient to provide safety from electric shock. Experimental measurements were performed on a real MV distribution network: a real single line to ground fault was made and fault currents were measured in the faulty substation and in four neighbouring substations. In this paper the problem of fault current distribution is introduced, the te…

Engineeringelectrical and electronic engineeringGlobal earthing systemCurrent distribution; Electrical safety; Global earthing systems; grounding; Power distribution faults; Single line to ground faultHardware_PERFORMANCEANDRELIABILITYFault (power engineering)Fault current limiterElectronic engineeringmedicineGlobal earthing systemscurrent distribution; electrical safety; global earthing systems; grounding; power distribution faults; single line to ground fault; electrical and electronic engineering; energy engineering and power technologyenergy engineering and power technologyCurrent distributionPower distribution faultsElectrical safetySingle line to ground faultElectric shockGroundbusiness.industryElectrical engineeringgroundingSingle linemedicine.diseaseEarthing systemSettore ING-IND/33 - Sistemi Elettrici Per L'EnergiaSettore ING-IND/31 - ElettrotecnicaCurrent (fluid)businessPower distribution faultVoltage
researchProduct

The Global Grounding System: Definitions and guidelines

2015

The present paper presents the preliminary results of the ongoing Italian METERGLOB project on the contribution given by the exposed conductive parts to a Global Grounding System. One of the expected results of METERGLOB is to carry out guidelines for the identification of a Global Grounding System. These guidelines must be defined on the basis of the definitions and methods present in the current international standards on grounding and safety. In the paper some definitions and elements to be taken into account for the identification of a Global Grounding System are given.

Engineeringbusiness.industryGroundMechanical engineeringEnergy Engineering and Power TechnologyDefinitionsDefinitionGuidelinesGuidelineEarthing systemGlobal Grounding System; Ground Fault; Guidelines; DefinitionsGlobal Grounding SystemSettore ING-IND/33 - Sistemi Elettrici Per L'EnergiaIdentification (information)Definitions; Global Grounding System; Ground Fault; Guidelines; Electrical and Electronic Engineering; Energy Engineering and Power TechnologySettore ING-IND/31 - ElettrotecnicaRisk analysis (engineering)Ground FaultElectrical and Electronic Engineeringbusiness
researchProduct

Influence of LV neutral grounding on global earthing systems

2015

International Standards define a Global Earthing System as an earthing net created interconnecting local Earthing Systems (generally through the shield of MV cables and/or bare buried conductors). In Italy, the regulatory authority for electricity and gas requires distributors to guarantee the electrical continuity of LV neutral conductor. This requirement has led to the standard practice of realizing “reinforcement groundings” along the LV neutral conductor path and at users’ delivery cabinet. Moreover, in urban high-load scenarios (prime candidates to be part of a Global Earthing System), it is common that LV distribution scheme creates, through neutral conductors, an effective connection…

Engineeringelectrical and electronic engineeringmaxwell subareas method020209 energyEnergy Engineering and Power TechnologyGround and neutralindustrial and manufacturing engineering02 engineering and technologyRegulatory authorityGlobal earthing system (GES) global grounding system (GGS) ground potential LV neutral conductor maxwell subareas method.control and systems engineeringlv neutral conductorShield0202 electrical engineering electronic engineering information engineeringglobal earthing systemmaxwell sub-areas methodGlobal earthing system (GES)Electrical conductorglobal grounding system (GGS)Groundbusiness.industryGES; GGS; global earthing system; global grounding system; ground potential; lv neutral conductor; maxwell sub-areas method; control and systems engineering; industrial and manufacturing engineering; electrical and electronic engineeringElectrical engineeringGlobal Earting SystemGESglobal grounding systemground potentialEarthing systemGGSGlobal earthing system (GES); global grounding system (GGS); ground potential; LV neutral conductor; maxwell subareas method; Control and Systems Engineering; Industrial and Manufacturing Engineering; Electrical and Electronic EngineeringSettore ING-IND/33 - Sistemi Elettrici Per L'EnergiaSettore ING-IND/31 - ElettrotecnicaGlobal Earting System; GES; Global Grounding System; GGS; Ground potential; Maxwell Sub-areas Method; LV neutral conductorHigh loadElectricityGES; GGS; Global earting system; global grounding system; ground potential; lv neutral conductor; maxwell sub-areas method; electrical and electronic engineering; energy engineering and power technologybusiness
researchProduct

A practical method to test the safety of HV/MV substation Grounding Systems

2015

The adequacy of a Grounding System (GS) to the safety conditions has to be periodically tested by measurements. The test methods and techniques used to verify the electrical characteristics of the GS include the measurements of step and touch voltages. The goal of the test is to verify that touch voltage and step voltage remain below a safe value in all the zones of the installation. The measurements can present some operational difficulties. The purpose of this paper is to present the procedure, step-by-step, of a practical method of measuring touch/step voltages in grounding systems located in urban or industrial areas with reduced accessibility. The suggested method uses auxiliary curren…

Engineeringbusiness.industryGroundEnergy Engineering and Power Technologyglobal grounding systemground potentialgrounding systemEarthing systemelectrical safety; global grounding system; ground potential; grounding system; electrical and electronic engineering; energy engineering and power technologyElectrical safety; grounding system; Global Grounding System; Ground potentialTest (assessment)Settore ING-IND/33 - Sistemi Elettrici Per L'EnergiaSettore ING-IND/31 - ElettrotecnicaElectronic engineeringElectrical and Electronic EngineeringbusinessSimulationVoltageElectrical safety
researchProduct