6533b7d7fe1ef96bd1268e5c

RESEARCH PRODUCT

Optimization of the JUNO liquid scintillator composition using a Daya Bay antineutrino detector

Daya BayJuno CollaborationsA. AbuslemeT. AdamS. AhmadS. AielloM. AkramN. AliF. P. AnG. P. AnQ. AnG. AndronicoN. AnfimovV. AntonelliT. AntoshkinaB. AsavapibhopJ. P. A. M. De AndréA. BabicA. B. BalantekinW. BaldiniM. BaldonciniH. R. BandA. BarresiE. BaussanM. BellatoE. BernieriD. BiareT. BirkenfeldM. BishaiS. BlinD. BlumS. BlythC. BordereauA. BrigattiR. BrugneraA. BudanoP. BurgbacherM. BuscemiS. BussinoJ. BustoI. ButorovA. CabreraH. CaiX. CaiY. K. CaiZ. Y. CaiA. CammiA. CampenyC. Y. CaoG. F. CaoJ. CaoR. CarusoC. CernaI. ChakaberiaJ. F. ChangY. ChangH. S. ChenP. A. ChenP. P. ChenS. M. ChenS. J. ChenX. R. ChenY. W. ChenY. X. ChenY. ChenZ. ChenJ. ChengY. P. ChengZ. K. ChengA. ChepurnovJ. J. CherwinkaF. ChiarelloD. ChiesaP. ChimentiM. C. ChuA. ChukanovA. Chuvashova. ClementiB. ClerbauxS. Conforti Di LorenzoD. CortiS. CostaF. D. CorsoJ. P. CummingsO. DalagerC. De La TailleF. S. DengJ. W. DengZ. DengZ. Y. DengW. DepneringM. DiazX. F. DingY. Y. DingB. DirgantaraS. DmitrievskyM. V. DiwanT. DohnalG. DonchenkoJ. M. DongD. DornicE. DoroshkevichJ. DoveM. DracosF. DruilloleS. X. DuS. DusiniM. DvorakD. A. DwyerT. EnqvistH. EnzmannA. FabbriL. FajtD. H. FanL. FanC. FangJ. FangA. FatkinaD. FedoseevV. FeketeL. C. FengQ. C. FengG. FiorentiniR. FordA. FormozovA. FournierS. FrankeJ. P. GalloH. N. GanF. GaoA. GarfagniniA. GöttelC. GensterM. GiammarchiA. GiazN. GiudiceF. GiulianiM. GoncharG. H. GongH. GongO. GorchakovY. GornushkinM. GrassiC. GrewingM. GromovV. GromovM. H. GuW. Q. GuX. F. GuY. GuM. Y. GuanN. GuardoneM. GulC. GuoJ. Y. GuoL. GuoW. L. GuoX. H. GuoY. H. GuoZ. GuoM. HaackeR. W. HackenburgP. HackspacherC. HagnerR. HanY. HanS. HansM. HeW. HeK. M. HeegerT. HeinzY. K. HengR. HerreraA. HigueraD. J. HongY. K. HorS. J. HouY. B. HsiungB. Z. HuH. HuJ. R. HuJ. HuS. Y. HuT. HuZ. J. HuC. H. HuangG. H. HuangH. X. HuangQ. H. HuangW. H. HuangX. T. HuangY. B. HuangP. HuberJ. Q. HuiL. HuoW. J. HuoC. HussS. HussainA. InsoliaA. IoannisianD. IoannisyanR. IsocrateD. E. JaffeK. L. JenX. L. JiX. P. JiX. Z. JiH. H. JiaJ. J. JiaS. Y. JianD. JiangX. S. JiangR. Y. JinX. P. JingR. A. JohnsonC. JolletD. JonesJ. JoutsenvaaraS. JungthawanL. KalousisP. KampmannL. KangM. KaragounisN. KazarianS. H. KettellA. KhanW. KhanK. KhosonthongkeeP. KinzS. KohnD. KorablevK. KouzakovM. KramerA. KrasnoperovS. KrokhalevaZ. KrumshteynA. KruthN. KutovskiyP. KuusiniemiB. LachacinskiT. LachenmaierT. J. LangfordJ. LeeJ. H. C. LeeF. LefevreL. LeiR. LeiR. LeitnerJ. LeungC. LiD. M. LiF. LiF. LiH. T. LiH. L. LiJ. LiJ. J. LiJ. Q. LiK. J. LiM. Z. LiN. LiN. LiQ. J. LiQ. J. LiR. H. LiS. C. LiS. F. LiS. J. LiT. LiT. LiW. D. LiW. G. LiX. M. LiX. N. LiX. L. LiX. Q. LiY. LiY. F. LiZ. B. LiZ. Y. LiH. LiangH. LiangJ. J. LiangD. LiebauA. LimphiratS. LimpijumnongC. J. LinG. L. LinS. X. LinT. LinY. H. LinJ. J. LingJ. M. LinkI. LippiL. LittenbergB. R. LittlejohnF. LiuH. LiuH. LiuH. B. LiuH. D. LiuH. J. LiuH. T. LiuJ. C. LiuJ. L. LiuM. LiuQ. LiuQ. LiuR. X. LiuS. Y. LiuS. B. LiuS. L. LiuX. W. LiuY. LiuA. LokhovP. LombardiK. LooS. LorenzC. LuC. LuH. Q. LuJ. B. LuJ. G. LuS. X. LuX. X. LuB. LubsandorzhievS. LubsandorzhievL. LudhovaK. B. LukF. J. LuoG. LuoP. W. LuoS. LuoW. M. LuoV. LyashukQ. M. MaS. MaX. B. MaX. Y. MaY. Q. MaY. MalyshkinF. MantovaniY. J. MaoS. M. MariF. MariniS. MariumC. MarshallC. MartelliniG. Martin-chassardD. A. Martinez CaicedoA. MartiniJ. MartinoD. MayilyanK. T. McdonaldR. D. MckeownA. MüllerG. MengY. MengA. MeregagliaE. MeroniD. MeyhöferM. MezzettoJ. MillerL. MiramontiS. MonforteP. MontiniM. MontuschiN. MorozovP. MuralidharanJ. NapolitanoM. NastasiD. V. NaumovE. NaumovaI. NemchenokA. NikolaevF. P. NingZ. NingH. NunokawaL. OberauerJ. P. Ochoa-ricouxA. OlshevskiyF. OrticaH. R. PanA. PaoloniJ. ParkN. ParkalianS. ParmeggianoS. PattonT. PayupolV. PecD. PedrettiY. T. PeiN. PellicciaA. G. PengH. P. PengJ. C. PengF. PerrotP. A. PetitjeanL. F. Pineres RicoA. PopovP. PoussotW. PratumwanE. PrevitaliC. S. J. PunF. Z. QiM. QiS. QianX. QianX. H. QianH. QiaoZ. H. QinS. K. QiuM. RajputG. RanucciN. RaperA. ReH. RebberA. RebiiB. RenJ. RenC. M. RevecoT. RezinkoB. RicciM. RobensM. RocheN. RodphaiL. RohwerA. RomaniR. RoseroB. RoskovecC. RothX. C. RuanX. D. RuanS. RujirawatA. RybnikovA. SadovskyP. SaggeseG. SalamannaA. SangkaN. SanguansakU. SawangwitJ. SawatzkiF. SawyM. ScheverJ. SchulerC. SchwabK. SchweizerD. SelivanovA. SelyuninA. SerafiniG. SettantaM. SettimoM. ShahzadG. ShiJ. Y. ShiY. J. ShiV. ShutovA. SidorenkovF. SimkovicC. SirignanoJ. SiripakM. SistiM. SlupeckiM. SmirnovO. SmirnovT. Sogo-bezerraJ. SongwadhanaB. SoonthornthumA. SotnikovO. SramekW. SreethawongA. StahlL. StancoK. StankevichD. StefanikH. SteigerH. SteinerJ. SteinmannM. StenderV. StratiA. StudenikinG. X. SunL. T. SunJ. L. SunS. F. SunX. L. SunY. J. SunY. Z. SunN. SuwonjandeeM. SzelezniakJ. TangQ. TangQ. TangX. TangA. TietzschI. TkachevT. TmejK. TreskovG. TroniW. TrzaskaW. -H. TseC. E. TullC. TuveS. Van WaasenJ. Vanden BoomN. VassilopoulosV. VedinG. VerdeM. VialkovB. ViaudB. VirenC. VolpeV. VorobelL. VotanoP. WalkerC. WangC. H. WangE. WangG. L. WangJ. WangJ. WangK. Y. WangL. WangM. F. WangM. WangM. WangN. Y. WangR. G. WangS. G. WangW. WangW. WangW. S. WangX. WangX. Y. WangY. WangY. WangY. WangY. F. WangY. G. WangY. M. WangY. Q. WangZ. WangZ. WangZ. M. WangZ. Y. WangA. WatcharangkoolH. Y. WeiL. H. WeiW. WeiY. D. WeiL. J. WenK. WhisnantC. G. WhiteC. WiebuschS. C. F. WongH. L. H. WongB. WonsakE. WorcesterC. H. WuD. R. WuF. L. WuQ. WuW. J. WuZ. WuM. WurmJ. WurtzC. WysotzkiY. F. XiD. M. XiaY. G. XieZ. Q. XieZ. Z. XingD. L. XuF. R. XuH. K. XuJ. L. XuJ. XuM. H. XuT. XuY. XuY. XuT. XueB. J. YanX. B. YanY. P. YanA. B. YangC. G. YangH. YangJ. YangL. YangX. Y. YangY. F. YangY. Z. YangH. F. YaoZ. YasinJ. X. YeM. YeU. YeginM. YehF. YermiaP. H. YiZ. Y. YouB. L. YoungB. X. YuC. X. YuC. Y. YuH. Z. YuM. YuX. H. YuZ. Y. YuC. Z. YuanY. YuanZ. X. YuanZ. Y. YuanB. B. YueN. ZafarA. ZambaniniP. ZengS. ZengT. X. ZengY. D. ZengL. ZhanC. ZhangF. Y. ZhangG. Q. ZhangH. H. ZhangH. Q. ZhangJ. ZhangJ. B. ZhangJ. W. ZhangP. ZhangQ. M. ZhangT. ZhangX. M. ZhangX. T. ZhangY. ZhangY. H. ZhangY. M. ZhangY. P. ZhangY. X. ZhangY. Y. ZhangY. Y. ZhangZ. J. ZhangZ. P. ZhangZ. Y. ZhangZ. Y. ZhangF. Y. ZhaoJ. ZhaoR. ZhaoS. J. ZhaoT. C. ZhaoD. Q. ZhengH. ZhengM. S. ZhengY. H. ZhengW. R. ZhongJ. ZhouL. ZhouN. ZhouS. ZhouX. ZhouJ. ZhuK. J. ZhuH. L. ZhuangL. ZongJ. H. Zou

subject

organic compounds: admixtureNuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsLiquid scintillatorscintillation counter: liquidAnalytical chemistryFOS: Physical sciencesmodel: opticalScintillatorWavelength shifterantineutrino: detector01 natural sciencesNOHigh Energy Physics - Experimentwavelength shifterHigh Energy Physics - Experiment (hep-ex)PE2_2Daya BayNeutrino0103 physical sciencesfluorine: admixture[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]ddc:530neutrino oscillation[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsInstrumentationJiangmen Underground Neutrino ObservatoryPhysicsJUNO010308 nuclear & particles physicsSettore FIS/01 - Fisica SperimentaleDetectorLight yield; Liquid scintillator; NeutrinoInstrumentation and Detectors (physics.ins-det)Yield (chemistry)Scintillation counterComposition (visual arts)photon: yieldNeutrinoLight yield

description

To maximize the light yield of the liquid scintillator (LS) for the Jiangmen Underground Neutrino Observatory (JUNO), a 20 t LS sample was produced in a pilot plant at Daya Bay. The optical properties of the new LS in various compositions were studied by replacing the gadolinium-loaded LS in one antineutrino detector. The concentrations of the fluor, PPO, and the wavelength shifter, bis-MSB, were increased in 12 steps from 0.5 g/L and <0.01 mg/L to 4 g/L and 13 mg/L, respectively. The numbers of total detected photoelectrons suggest that, with the optically purified solvent, the bis-MSB concentration does not need to be more than 4 mg/L. To bridge the one order of magnitude in the detector size difference between Daya Bay and JUNO, the Daya Bay data were used to tune the parameters of a newly developed optical model. Then, the model and tuned parameters were used in the JUNO simulation. This enabled to determine the optimal composition for the JUNO LS: purified solvent LAB with 2.5 g/L PPO, and 1 to 4 mg/L bis-MSB.

https://doi.org/10.1016/j.nima.2020.164823