0000000000275544
AUTHOR
A. Budano
Observation of the cosmic ray moon shadowing effect with the ARGO-YBJ experiment
Cosmic rays are hampered by the Moon and a deficit in its direction is expected (the so-called Moon shadow). The Moon shadow is an important tool to determine the performance of an air shower array. Indeed, the westward displacement of the shadow center, due to the bending effect of the geomagnetic field on the propagation of cosmic rays, allows the setting of the absolute rigidity scale of the primary particles inducing the showers recorded by the detector. In addition, the shape of the shadow permits to determine the detector point spread function, while the position of the deficit at high energies allows the evaluation of its absolute pointing accuracy. In this paper we present the obser…
Long-term monitoring of the TeV emission from Mrk 421 with the ARGO-YBJ experiment
ARGO-YBJ is an air shower detector array with a fully covered layer of resistive plate chambers. It is operated with a high duty cycle and a large field of view. It continuously monitors the northern sky at energies above 0.3 TeV. In this paper, we report a long-term monitoring of Mrk 421 over the period from 2007 November to 2010 February. This source was observed by the satellite-borne experiments Rossi X-ray Timing Explorer and Swift in the X-ray band. Mrk 421 was especially active in the first half of 2008. Many flares are observed in both X-ray and gamma-ray bands simultaneously. The gamma-ray flux observed by ARGO-YBJ has a clear correlation with the X-ray flux. No lag between the X-r…
Feasibility and physics potential of detecting $^8$B solar neutrinos at JUNO
The Jiangmen Underground Neutrino Observatory (JUNO) features a 20 kt multi-purpose underground liquid scintillator sphere as its main detector. Some of JUNO's features make it an excellent location for 8B solar neutrino measurements, such as its low-energy threshold, high energy resolution compared with water Cherenkov detectors, and much larger target mass compared with previous liquid scintillator detectors. In this paper, we present a comprehensive assessment of JUNO's potential for detecting 8B solar neutrinos via the neutrino-electron elastic scattering process. A reduced 2 MeV threshold for the recoil electron energy is found to be achievable, assuming that the intrinsic radioactive …
Optimization of the JUNO liquid scintillator composition using a Daya Bay antineutrino detector
To maximize the light yield of the liquid scintillator (LS) for the Jiangmen Underground Neutrino Observatory (JUNO), a 20 t LS sample was produced in a pilot plant at Daya Bay. The optical properties of the new LS in various compositions were studied by replacing the gadolinium-loaded LS in one antineutrino detector. The concentrations of the fluor, PPO, and the wavelength shifter, bis-MSB, were increased in 12 steps from 0.5 g/L and <0.01 mg/L to 4 g/L and 13 mg/L, respectively. The numbers of total detected photoelectrons suggest that, with the optically purified solvent, the bis-MSB concentration does not need to be more than 4 mg/L. To bridge the one order of magnitude in the detect…
Calibration of the RPC charge readout in the ARGO-YBJ experiment
""The charge readout of Resistive Plate Chambers (RPCs) is implemented in the ARGO-YBJ experiment to measure the charged particle density of the shower front up to 10^4\\\/m^2, enabling the study of the primary cosmic rays with energies in the ''knee'' region. As the first time for RPCs being used this way, a telescope with RPCs and scintillation detectors is setup to calibrate the number of charged particles hitting a RPC versus its charge readout. Air shower particles are taken as the calibration beam. The telescope was tested at sea level and then moved to the ARGO-YBJ site for coincident operation with the ARGO-YBJ experiment. The charge readout shows good linearity with the particle de…
Gamma-Ray Flares from Mrk421 in 2008 observed with the ARGO-YBJ detector
In 2008 the blazar Markarian 421 entered a very active phase and was one of the brightest sources in the sky at TeV energies, showing frequent flaring episodes. Using the data of ARGO-YBJ, a full coverage air shower detector located at Yangbajing (4300 m a.s.l., Tibet, China), we monitored the source at gamma ray energies E > 0.3 TeV during the whole year. The observed flux was variable, with the strongest flares in March and June, in correlation with X-ray enhanced activity. While during specific episodes the TeV flux could be several times larger than the Crab Nebula one, the average emission from day 41 to 180 was almost twice the Crab level, with an integral flux of (3.6 +-0.6) 10^-1…
Software Timing Calibration of the ARGO-YBJ Detector
The ARGO-YBJ experiment is mainly devoted to search for astronomical gamma sources. The arrival direction of air showers is reconstructed thanks to the times measured by the pixels of the detector. Therefore, the timing calibration of the detector pixels is crucial in order to get the best angular resolution and pointing accuracy. Because of the large number of pixels a hardware timing calibration is practically impossible. Therefore an off-line software calibration has been adopted. Here, the details of the procedure and the results are presented. (C) 2008 Elsevier B.V. All rights reserved.
The Status of the ARGO Experiment at YBJ
The ARGO-YBJ experiment, located at Yangbajing, Tibet, China, performed by a wide Sino-Italian collaboration, is designed to study cosmic rays, sub-TeV gamma ray sources and GeV Gamma Ray Burst (GRB) emission in the northern hemisphere, by means of detecting small size EAS (Extensive Air Shower) using a full coverage RPC (Resistive Plate Chamber) carpet. The central carpet of the detector is installed and put into operation to date, with 1900 m^2 of the carpet already operating since December 2004. With a trigger multiplicity of ≥60 hits, corresponding to a primary mode energy of 2 TeV, the angular resolution of EAS measurements is < 1 degree for showers with more than 500 recorded hits. We…
Mean Interplanetary Magnetic Field Measurement Using the ARGO-YBJ Experiment
The sun blocks cosmic ray particles from outside the solar system, forming a detectable shadow in the sky map of cosmic rays detected by the ARGO-YBJ experiment in Tibet. Because the cosmic ray particles are positive charged, the magnetic field between the sun and the earth deflects them from straight trajectories and results in a shift of the shadow from the true location of the sun. Here we show that the shift measures the intensity of the field which is transported by the solar wind from the sun to the earth.
Early warning for VHE gamma-ray flares with the ARGO-YBJ detector
Detecting and monitoring emissions from flaring gamma-ray sources in the very-high-energy (VHE, > 100 GeV) band is a very important topic in gamma-ray astronomy. The ARGO-YBJ detector is characterized by a high duty cycle and a wide field of view. Therefore, it is particularly capable of detecting flares from extragalactic objects. Based on fast reconstruction and analysis, real-time monitoring of 33 selected VHE extragalactic sources is implemented. Flares exceeding a specific threshold are reported timely, hence enabling the follow-up observation of these objects using more sensitive detectors, such as Cherenkov telescopes. (C) 2011 Elsevier B.V. All rights reserved.
Energy spectrum of cosmic protons and helium nuclei by a hybrid measurement at 4300 m a.s.l.
The energy spectrum of cosmic Hydrogen and Helium nuclei has been measured, below the so-called "knee", by using a hybrid experiment with a wide field-of-view Cherenkov telescope and the Resistive Plate Chamber (RPC) array of the ARGO-YBJ experiment at 4300 m above sea level. The Hydrogen and Helium nuclei have been well separated from other cosmic ray components by using a multi-parameter technique. A highly uniform energy resolution of about 25% is achieved throughout the whole energy range (100 TeV - 700 TeV). The observed energy spectrum is compatible with a single power law with index gamma=-2.63+/-0.06.
ARGO-YBJ constraints on very high energy emission from GRBs
The ARGO-YBJ (Astrophysical Radiation Ground-based Observatory at YangBaJing) experiment is designed for very high energy $\gamma$-astronomy and cosmic ray researches. Due to the full coverage of a large area ($5600 m^2$) with resistive plate chambers at a very high altitude (4300 m a.s.l.), the ARGO-YBJ detector is used to search for transient phenomena, such as Gamma-ray bursts (GRBs). Because the ARGO-YBJ detector has a large field of view ($\sim$2 sr) and is operated with a high duty cycle ($>$90%), it is well suited for GRB surveying and can be operated in searches for high energy GRBs following alarms set by satellite-borne observations at lower energies. In this paper, the sensitivit…
Highlights from the ARGO-YBJ Experiment
""The ARGO-YBJ experiment at YangBaJing in Tibet (4300m a.s.l.) has been taking data with its full layout since October 2007. Here we present a few significant results obtained in gamma-ray astronomy and cosmic-ray physics. Emphasis is placed on the analysis of gamma-ray emission from point-like sources (Crab Nebula, MRK 421), on the preliminary limit on the antiproton\\\/proton flux ratio, on the large-scale cosmic-ray anisotropy and on the proton-air cross-section. The performance of the detector is also discussed, and the perspectives of the experiment are outlined.""
Scaler mode technique for the ARGO-YBJ detector
The ARGO-YBJ experiment has been designed to study the Extensive Air Showers with an energy threshold lower than that of the existing arrays by exploiting the high altitude location(4300 m a.s.l. in Tibet, P.R. China) and the full ground plane coverage. The lower energy limit of the detector (E $\sim$ 1 GeV) is reached by the scaler mode technique, i.e. recording the counting rate at fixed time intervals. At these energies, transient signals due to local (e.g. Forbush Decreases) and cosmological (e.g. Gamma Ray Bursts) phenomena are expected as a significant variation of the counting rate compared to the background. In this paper the performance of the ARGO-YBJ detector operating in scaler …
The analog Resistive Plate Chamber detector of the ARGO-YBJ experiment
The ARGO-YBJ experiment has been in stable data taking from November 2007 till February 2013 at the YangBaJing Cosmic Ray Observatory (4300 m a.s.l.). The detector consists of a single layer of Resistive Plate Chambers (RPCs) (6700 m2) operated in streamer mode. The signal pick-up is obtained by means of strips facing one side of the gas volume. The digital readout of the signals, while allows a high space–time resolution in the shower front reconstruction, limits the measurable energy to a few hundred TeV. In order to fully investigate the 1–10 PeV region, an analog readout has been implemented by instrumenting each RPC with two large size electrodes facing the other side of the gas volume…
Limit on the production of a light vector gauge boson in $\phi $ mesondecays with the KLOE detector
We present a new limit on the production of a light dark-force mediator with the KLOE detector at DAPHNE. This boson, called U, has been searched for in the decay phi --> eta U, U --> e+ e-, analyzing the decay eta --> pi0 pi0 pi0 in a data sample of 1.7 fb-1. No structures are observed in the e+e- invariant mass distribution over the background. This search is combined with a previous result obtained from the decay eta --> pi+ pi- pi0, increasing the sensitivity. We set an upper limit at 90% C.L. on the ratio between the U boson coupling constant and the fine structure constant of alpha'/alpha < 1.7x10^-5 for 30<M_U<400 MeV and alpha'/alpha < 8x10^-6 for the sub-region 50<M_U<210 MeV. This…
Temperature effect on RPC performance in the ARGO-YBJ experiment
The ARGO-YBJ experiment has been taking data for nearly 2 years. In order to monitor continuously the performance of the Resistive Plate Chamber detectors and to study the daily temperature effects on the detector performance, a cosmic ray muon telescope was setup near the carpet detector array in the ARGO-YBJ laboratory. Based on the measurements performed using this telescope, it is found that, at the actual operating voltage of 7.2kV, the temperature effect on the RPC time resolution is about 0.04ns/degrees C and on the particle detection efficiency is about 0.03%/degrees C. Based on these figures we conclude that the environmental effects do not affect substantially the angular resoluti…
TeV gamma-ray survey of the Northern sky using the ARGO-YBJ detector
The ARGO-YBJ detector is an extensive air shower array that has been used to monitor the northern $\gamma$-ray sky at energies above 0.3 TeV from 2007 November to 2013 January. In this paper, we present the results of a sky survey in the declination band from $-10^{\circ}$ to $70^{\circ}$, using data recorded over the past five years. With an integrated sensitivity ranging from 0.24 to $\sim$1 Crab units depending on the declination, six sources have been detected with a statistical significance greater than 5 standard deviations. Several excesses are also reported as potential $\gamma$-ray emitters. The features of each source are presented and discussed. Additionally, $95\%$ confidence le…
Intrinsic linearity of bakelite Resistive Plate Chambers operated in streamer mode
Abstract Resistive Plate Chambers have largely been used in High Energy Physics and Cosmic Ray research. In view of using this detector for calorimetry applications it is important to know the maximum measurable particle density, or its intrinsic linearity limit, which is tightly related to the dimension of the discharge region. In this paper we report the results of measurements performed at the Beam Test Facility (INFN National Laboratory of Frascati, Italy) where the intrinsic linearity of bakelite RPCs operated in streamer mode has been tested at different impinging particle densities.