0000000000286872

AUTHOR

H. Huang

Feasibility and physics potential of detecting $^8$B solar neutrinos at JUNO

The Jiangmen Underground Neutrino Observatory (JUNO) features a 20 kt multi-purpose underground liquid scintillator sphere as its main detector. Some of JUNO's features make it an excellent location for 8B solar neutrino measurements, such as its low-energy threshold, high energy resolution compared with water Cherenkov detectors, and much larger target mass compared with previous liquid scintillator detectors. In this paper, we present a comprehensive assessment of JUNO's potential for detecting 8B solar neutrinos via the neutrino-electron elastic scattering process. A reduced 2 MeV threshold for the recoil electron energy is found to be achievable, assuming that the intrinsic radioactive …

research product

Precise measurement of $$2\nu \beta \beta $$ 2νββ decay of $$^{100}$$ 100 Mo with the CUPID-Mo detection technology

We report the measurement of the two-neutrino double-beta ($$2\nu \beta \beta $$ 2νββ ) decay of $$^{100}$$ 100 Mo to the ground state of $$^{100}$$ 100 Ru using lithium molybdate ($$\hbox {Li}_2^{\;\;100}\hbox {MoO}_4$$ Li2100MoO4 ) scintillating bolometers. The detectors were developed for the CUPID-Mo program and operated at the EDELWEISS-III low background facility in the Modane underground laboratory (France). From a total exposure of 42.235 kg$$\times $$ × day, the half-life of $$^{100}$$ 100 Mo is determined to be $$T_{1/2}^{2\nu }=[7.12^{+0.18}_{-0.14}\,\mathrm {(stat.)}\pm 0.10\,\mathrm {(syst.)}]\times 10^{18}$$ T1/22ν=[7.12-0.14+0.18(stat.)±0.10(syst.)]×1018 years. This is the mo…

research product