0000000000287298

AUTHOR

Angela Bahlo

The relative role of the T-domain and flanking sequences for developmental control and transcriptional regulation in protein chimeras of Drosophila OMB and ORG-1

optomotor-blind (omb) and optomotor-blind related-1 (org-1) encode T-domain DNA binding proteins in Drosophila. Members of this family of transcription factors play widely varying roles during early development and organogenesis in both vertebrates and invertebrates. Functional specificity differs in spite of similar DNA binding preferences of all family members. Using a series of domain swap chimeras, in which different parts of OMB and ORG-1 were mutually exchanged, we investigated the relevance of individual domains in vitro and in vivo. In cell culture transfection assays, ORG-1 was a strong transcriptional activator, whereas OMB appeared neutral. The main transcriptional activation fun…

research product

optomotor-blind suppresses instability at the A/P compartment boundary of the Drosophila wing.

Formation and function of the A/P compartment boundary of the Drosophila wing have been studied intensely. The boundary prevents mingling of A and P cells, is characterized by an expression discontinuity of several genes like engrailed, Cubitus interruptus, hedgehog and decapentaplegic and is essential for patterning the wing. Compared with segmental or compartmental boundaries in several other systems which generally manifest as folds or clefts, the wing A/P boundary is morphologically inconspicuous in both the larval and adult stage. We show here that the Drosophila wing A/P boundary, too, is susceptible to fold and cleft formation and that these processes are suppressed by the T-box tran…

research product