Bioengineered human bone tissue using autogenous osteoblasts cultured on different biomatrices
Surgical treatment of critical-size posttraumatic bone defects is still a challenging problem, even in modern bone and joint surgery. Progress in cellular and molecular biology during the last decade now permits novel approaches in bone engineering. Recent conceptual and technical advances have enabled the use of mitotically expanded, bone-derived cells as a therapeutic approach for tissue repair. Using three different tissue carrier systems, we successfully cultivated human osteoblasts in a newly developed perfusion chamber. We studied cell proliferation and the expression of osteocalcin, osteopontin, bone morphogenetic protein-2A, alkaline phosphatase, and vascular endothelial growth fact…