0000000000287483

AUTHOR

Hagan Bayley

Molecular architecture of a toxin pore: a 15-residue sequence lines the transmembrane channel of staphylococcal alpha-toxin.

Staphylococcus aureus alpha-toxin is a hydrophilic polypeptide of 293 amino acids that produces heptameric transmembrane pores. During assembly, the formation of a pre-pore precedes membrane permeabilization; the latter is linked to a conformational change in the oligomer. Here, 41 single-cysteine replacement toxin mutants were thiol-specifically labelled with the polarity-sensitive fluorescent probe acrylodan. After oligomerization on membranes, only the mutants with acrylodan attached to residues in the sequence 118-140 exhibited a marked blue shift in the fluorescence emission maximum, indicative of movement of the fluorophore to a hydrophobic environment. Within this region, two functio…

research product

Staphylococcal alpha-toxin, streptolysin-O, and Escherichia coli hemolysin: prototypes of pore-forming bacterial cytolysins.

Staphylococcal alpha-toxin, streptolysin-O, and Escherichia coli hemolysin are well-studied prototypes of pore-forming bacterial cytotoxins. Each is produced as a water-soluble single-chain polypeptide that inserts into target membranes to form aqueous transmembrane pores. This review will compare properties of the three toxin prototypes, highlighting the similarities and also the differences in their structure, mode of binding, mechanism of pore formation, and the responses they elicit in target cells. Pore-forming toxins represent the most potent and versatile weapons with which invading microbes damage the host macroorganism.

research product

Elimination of a bacterial pore-forming toxin by sequential endocytosis and exocytosis

Staphylococcus aureus alpha-toxin is the archetype of bacterial pore forming toxins and a key virulence factor secreted by the majority of clinical isolates of S. aureus. Toxin monomers bind to target cells and oligomerize to form small beta-barrel pores in the plasma membrane. Many nucleated cells are able to repair a limited number of lesions by unknown, calcium-independent mechanisms. Here we show that cells can internalize alpha-toxin, that uptake is essential for cellular survival, and that pore-complexes are not proteolytically degraded, but returned to the extracellular milieu in the context of exosome-like structures, which we term toxosomes.

research product

Transmembrane beta-barrel of staphylococcal alpha-toxin forms in sensitive but not in resistant cells.

Staphylococcal α-toxin is a 293-residue, single-chain polypeptide that spontaneously assembles into a heptameric pore in target cell membranes. To identify the pore-forming domain, substitution mutants have been produced in which single cysteine residues were introduced throughout the toxin molecule. By attaching the environmentally sensitive dye acrylodan to the sulfhydryl groups, the environment of individual amino acid side chains could be probed. In liposomes, a single 23-amino acid sequence (residues 118–140) was found to move from a polar to a nonpolar environment, indicating that this sequence forms the walls of the pore. However, periodicity in side chain environmental polarity coul…

research product