0000000000287622

AUTHOR

Simona Buscemi

showing 7 related works from this author

Comparing Boosting and Bagging for Decision Trees of Rankings

2021

AbstractDecision tree learning is among the most popular and most traditional families of machine learning algorithms. While these techniques excel in being quite intuitive and interpretable, they also suffer from instability: small perturbations in the training data may result in big changes in the predictions. The so-called ensemble methods combine the output of multiple trees, which makes the decision more reliable and stable. They have been primarily applied to numeric prediction problems and to classification tasks. In the last years, some attempts to extend the ensemble methods to ordinal data can be found in the literature, but no concrete methodology has been provided for preference…

Ordinal dataBoosting (machine learning)Preference learningEnsemble methodsComputer sciencebusiness.industryDecision tree learningDecision treesDecision treeLibrary and Information SciencesMachine learningcomputer.software_genreEnsemble learningBoostingMathematics (miscellaneous)RankingPattern recognition (psychology)Psychology (miscellaneous)Artificial intelligencePreference learningStatistics Probability and UncertaintybusinesscomputerRankings
researchProduct

Hierarchy of factors impacting grape berry mass: separation of direct and indirect effects on major berry metabolites

2018

Final berry mass, a major quality factor in wine production, is determined by the integrated effect of biotic and abiotic factors that can also influence berry composition. Under field conditions, interactions between these factors complicate study of the variability of berry mass and composition. Depending on the observation scale, the hierarchy of the impact degree of these factors can vary. The present work examines the simultaneous effects of the major factors influencing berry mass and composition to create a hierarchy by impact degree. A second objective was to separate the possible direct effects of factors on berry composition from an indirect effect mediated through their impact on…

0106 biological sciencesVineBerryHorticulture01 natural sciencesBerry seed040501 horticultureVeraisonchemistry.chemical_compoundSoilBotanySugarBerry maAbiotic componentYeast assimilable nitrogen (YAN)ViruBerry composition; Berry mass; Berry seed; Soil; Vine water status; Virus; Yeast assimilable nitrogen (YAN);food and beverages04 agricultural and veterinary sciences15. Life on landIndirect effectSettore AGR/03 - Arboricoltura Generale E Coltivazioni ArboreeHorticulturechemistryBerry compositionComposition (visual arts)Malic acidVine water statu0405 other agricultural sciences010606 plant biology & botanyFood Science
researchProduct

A new position weight correlation coefficient for consensus ranking process without ties

2019

Preference data represent a particular type of ranking data where a group of people gives their preferences over a set of alternatives. The traditional metrics between rankings do not take into account the importance of swapping elements similar among them (element weights) or elements belonging to the top (or to the bottom) of an ordering (position weights). Following the structure of the τx proposed by Emond and Mason and the class of weighted Kemeny–Snell distances, a proper rank correlation coefficient is defined for measuring the correlation among weighted position rankings without ties. The one‐to‐one correspondence between the weighted distance and the rank correlation coefficient ho…

Statistics and ProbabilityCorrelation coefficientPosition (vector)Preference dataStatisticsProcess (computing)Statistics Probability and Uncertaintyconsensus ranking Kemeny distance position weights preference data rank correlation coefficientKemeny distanceMathematicsRanking (information retrieval)Stat
researchProduct

Consensus among preference rankings: a new weighted correlation coefficient for linear and weak orderings

2021

AbstractPreference data are a particular type of ranking data where some subjects (voters, judges,...) express their preferences over a set of alternatives (items). In most real life cases, some items receive the same preference by a judge, thus giving rise to a ranking with ties. An important issue involving rankings concerns the aggregation of the preferences into a “consensus”. The purpose of this paper is to investigate the consensus between rankings with ties, taking into account the importance of swapping elements belonging to the top (or to the bottom) of the ordering (position weights). By combining the structure of $$\tau _x$$ τ x proposed by Emond and Mason (J Multi-Criteria Decis…

Statistics and ProbabilityClass (set theory)Correlation coefficientApplied Mathematics02 engineering and technologyType (model theory)01 natural sciencesComputer Science ApplicationsSet (abstract data type)010104 statistics & probabilityRankingPosition (vector)StatisticsWeighted Rank correlation coefficient Weighted Kemeny distance Position weightsTies0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processing0101 mathematicsSettore SECS-S/01 - StatisticaPreference (economics)MathematicsRank correlationAdvances in Data Analysis and Classification
researchProduct

Model selection in linear mixed-effect models

2019

Linear mixed-effects models are a class of models widely used for analyzing different types of data: longitudinal, clustered and panel data. Many fields, in which a statistical methodology is required, involve the employment of linear mixed models, such as biology, chemistry, medicine, finance and so forth. One of the most important processes, in a statistical analysis, is given by model selection. Hence, since there are a large number of linear mixed model selection procedures available in the literature, a pressing issue is how to identify the best approach to adopt in a specific case. We outline mainly all approaches focusing on the part of the model subject to selection (fixed and/or ra…

Statistics and ProbabilityMixed modelEconomics and EconometricsMathematical optimizationLinear mixed modelApplied MathematicsModel selectionMDLVariance (accounting)LASSOCovarianceGeneralized linear mixed modelMixed model selectionLasso (statistics)Shrinkage methodsModeling and SimulationMCPAICBICSettore SECS-S/01 - StatisticaSocial Sciences (miscellaneous)AnalysisSelection (genetic algorithm)Curse of dimensionality
researchProduct

Consensus measures for preference rankings with ties: an approach based on position weighted Kemeny distance

2018

Preference data are a particular type of ranking data where some subjects (voters, judges, ...) give their preferences over a set of alternatives (items). It happens, in most of the real cases, that some items receive the same preference by a judge, giving raise to a ranking with ties. The purpose of our paper is to investigate on the consensus between rankings with ties taking into account the importance of swapping elements belonging to the top (or to the bottom) of the ordering (position weights). Combining the structure of the Taux proposed by Emond and Mason and the class of weighted Kemeny-Snell distances, we propose a position weighted rank correlation coefficient to compare rankings…

Weighted rank correlation Weighted Kemeny distance Position weights
researchProduct

Ensemble methods for ranking data with and without position weights

2020

The main goal of this Thesis is to build suitable Ensemble Methods for ranking data with weights assigned to the items’positions, in the cases of rankings with and without ties. The Thesis begins with the definition of a new rank correlation coefficient, able to take into account the importance of items’position. Inspired by the rank correlation coefficient, τ x , proposed by Emond and Mason (2002) for unweighted rankings and the weighted Kemeny distance proposed by García-Lapresta and Pérez-Román (2010), this work proposes τ x w , a new rank correlation coefficient corresponding to the weighted Kemeny distance. The new coefficient is analized analitically and empirically and represents the main…

ranking databoostingweighted Kemeny distancebaggingSettore SECS-S/01 - Statisticalinear mixed modelensemble method
researchProduct