0000000000287744

AUTHOR

Siddharth Mishra-sharma

showing 4 related works from this author

Searching for long-lived particles beyond the Standard Model at the Large Hadron Collider

2020

Particles beyond the Standard Model (SM) can generically have lifetimes that are long compared to SM particles at the weak scale. When produced at experiments such as the Large Hadron Collider (LHC) at CERN, these longlived particles (LLPs) can decay far from the interaction vertex of the primary proton–proton collision. Such LLP signatures are distinct from those of promptly decaying particles that are targeted by the majority of searches for new physics at the LHC, often requiring customized techniques to identify, for example, significantly displaced decay vertices, tracks with atypical properties, and short track segments. Given their non-standard nature, a comprehensive overview of LLP…

HIGH-ENERGYbeyond the Standard Modellarge hadron colliderPhysics::Instrumentation and DetectorsPROTON-PROTON COLLISIONSPhysics beyond the Standard Modelbeyond the standard model01 natural sciencesHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)high-luminosity lhcHigh Energy Physics - Phenomenology (hep-ph)MAGNETIC MONOPOLESlong-lived [particle]high-energy collider experimentsdecay: vertexscattering [p p][PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]long-lived particlesQCproposed [detector]Physicslifetimedark gauge forcesLarge Hadron ColliderCMSROOT-S=13 TEVroot-s=13 tevPhysicsnew physics: search forscale: electroweak interactionhep-phATLASelectroweak interaction [scale]vertex [decay]upgrade [detector]High Energy Physics - Experiment; High Energy Physics - Experiment; High Energy Physics - Phenomenologydetector: upgradeSettore FIS/02 - Fisica Teorica Modelli e Metodi Matematiciprimary [vertex]ddc:High Energy Physics - PhenomenologyCERN LHC CollLarge Hadron Colliderbaryon asymmetryvertex: primaryLHCcolliding beams [p p]exclusion limitspp collisionsParticle Physics - ExperimentsignatureNuclear and High Energy PhysicsParticle physicsp p: scatteringCERN LabPAIR PRODUCTIONcollider phenomenologyreviewFOS: Physical sciencesDARK GAUGE FORCES530search for [new physics]BARYON ASYMMETRY0103 physical sciencesddc:530010306 general physicsnumerical calculationsParticle Physics - PhenomenologyEXCLUSION LIMITSmagnetic monopolesPP COLLISIONS010308 nuclear & particles physicshep-exbackgroundbibliographyshowersMAJORANA NEUTRINOSCollisiontracksLHC-Bdetector: proposedhigh-luminosity LHCpair productionMATHUSLAPhysics and Astronomy[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]proton-proton collisionshigh-energymajorana neutrinosparticle: long-livedp p: colliding beamsPhysics BSMexperimental results
researchProduct

Edges and Endpoints in 21-cm Observations from Resonant Photon Production

2020

Physical review letters 127(1), 011102 (1-7) (2021). doi:10.1103/PhysRevLett.127.011102

dark matter: interactionPhotonCosmology and Nongalactic Astrophysics (astro-ph.CO)Physics beyond the Standard ModelbrightnesskineticGeneral Physics and AstronomyFOS: Physical sciencesContext (language use)AstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics53001 natural sciencesDark photonHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesddc:530010306 general physicsPhysicsphoton: productionCOSMIC cancer databasenew physicsproduction [photon]temperatureHigh Energy Physics - PhenomenologyBrightness temperatureDark Agesspectralinteraction [dark matter]signatureAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Modeling dark photon oscillations in our inhomogeneous Universe

2020

A dark photon may kinetically mix with the Standard Model photon, leading to observable cosmological signatures. The mixing is resonantly enhanced when the dark photon mass matches the primordial plasma frequency, which depends sensitively on the underlying spatial distribution of electrons. Crucially, inhomogeneities in this distribution can have a significant impact on the nature of resonant conversions. We develop and describe, for the first time, a general analytic formalism to treat resonant oscillations in the presence of inhomogeneities. Our formalism follows from the theory of level crossings of random fields and only requires knowledge of the one-point probability distribution func…

PhysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)PhotonRandom fieldPhoton conversion010308 nuclear & particles physicsFOS: Physical sciencesObservableProbability density functionElectronAstrophysics::Cosmology and Extragalactic AstrophysicsPlasma oscillation01 natural sciencesDark photonHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Quantum electrodynamics0103 physical sciences010306 general physicsAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Dark Photon Oscillations in Our Inhomogeneous Universe

2020

A dark photon may kinetically mix with the ordinary photon, inducing oscillations with observable imprints on cosmology. Oscillations are resonantly enhanced if the dark photon mass equals the ordinary photon plasma mass, which tracks the free electron number density. Previous studies have assumed a homogeneous Universe; in this Letter, we introduce for the first time an analytic formalism for treating resonant oscillations in the presence of inhomogeneities of the photon plasma mass. We apply our formalism to determine constraints from Cosmic Microwave Background photons oscillating into dark photons, and from heating of the primordial plasma due to dark photon dark matter converting into …

PhysicsFree electron modelCosmology and Nongalactic Astrophysics (astro-ph.CO)PhotonCosmic microwave backgroundDark matterFOS: Physical sciencesGeneral Physics and AstronomyPhysics::OpticsObservablePlasmaAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesDark photonCosmologyHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Quantum electrodynamics0103 physical sciences010306 general physicsAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct