0000000000287749

AUTHOR

Fabrizio Nesti

showing 4 related works from this author

Searching for long-lived particles beyond the Standard Model at the Large Hadron Collider

2020

Particles beyond the Standard Model (SM) can generically have lifetimes that are long compared to SM particles at the weak scale. When produced at experiments such as the Large Hadron Collider (LHC) at CERN, these longlived particles (LLPs) can decay far from the interaction vertex of the primary proton–proton collision. Such LLP signatures are distinct from those of promptly decaying particles that are targeted by the majority of searches for new physics at the LHC, often requiring customized techniques to identify, for example, significantly displaced decay vertices, tracks with atypical properties, and short track segments. Given their non-standard nature, a comprehensive overview of LLP…

HIGH-ENERGYbeyond the Standard Modellarge hadron colliderPhysics::Instrumentation and DetectorsPROTON-PROTON COLLISIONSPhysics beyond the Standard Modelbeyond the standard model01 natural sciencesHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)high-luminosity lhcHigh Energy Physics - Phenomenology (hep-ph)MAGNETIC MONOPOLESlong-lived [particle]high-energy collider experimentsdecay: vertexscattering [p p][PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]long-lived particlesQCproposed [detector]Physicslifetimedark gauge forcesLarge Hadron ColliderCMSROOT-S=13 TEVroot-s=13 tevPhysicsnew physics: search forscale: electroweak interactionhep-phATLASelectroweak interaction [scale]vertex [decay]upgrade [detector]High Energy Physics - Experiment; High Energy Physics - Experiment; High Energy Physics - Phenomenologydetector: upgradeSettore FIS/02 - Fisica Teorica Modelli e Metodi Matematiciprimary [vertex]ddc:High Energy Physics - PhenomenologyCERN LHC CollLarge Hadron Colliderbaryon asymmetryvertex: primaryLHCcolliding beams [p p]exclusion limitspp collisionsParticle Physics - ExperimentsignatureNuclear and High Energy PhysicsParticle physicsp p: scatteringCERN LabPAIR PRODUCTIONcollider phenomenologyreviewFOS: Physical sciencesDARK GAUGE FORCES530search for [new physics]BARYON ASYMMETRY0103 physical sciencesddc:530010306 general physicsnumerical calculationsParticle Physics - PhenomenologyEXCLUSION LIMITSmagnetic monopolesPP COLLISIONS010308 nuclear & particles physicshep-exbackgroundbibliographyshowersMAJORANA NEUTRINOSCollisiontracksLHC-Bdetector: proposedhigh-luminosity LHCpair productionMATHUSLAPhysics and Astronomy[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]proton-proton collisionshigh-energymajorana neutrinosparticle: long-livedp p: colliding beamsPhysics BSMexperimental results
researchProduct

Perturbativity and mass scales in the minimal left-right symmetric model

2016

The scalar sector of the minimal Left-Right model at TeV scale is revisited in light of the large quartic coupling needed for a heavy flavor-changing scalar. The stability and perturbativity of the effective potential is discussed and merged with constraints from low-energy processes. Thus the perturbative level of the Left-Right scale is sharpened. Lower limits on the triplet scalars are also derived: the left-handed triplet is bounded by oblique parameters, while the doubly-charged right- handed component is limited by the h → γγ, Zγ decays. Current constraints disfavor their detection as long as WR is within the reach of the LHC.

PhysicsLeft-right symmetryParticle physicsLarge Hadron Collider010308 nuclear & particles physicsPhysics beyond the Standard ModelHigh Energy Physics::PhenomenologyScalar (mathematics)Symmetric modelOblique caseParticle physics Collider Physics beyond the standard model Left-Right symmetry01 natural sciencesLarge Hadron ColliderQuartic functionBounded function0103 physical sciencesHiggs boson010306 general physicsLeft-right symmetry; Large Hadron Collider
researchProduct

Lepton Number Violation in Higgs Decay at LHC

2015

We show that within the Left-Right symmetric model, lepton number violating decays of the Higgs boson can be discovered at the LHC. The process is due to the mixing of the Higgs with the triplet that breaks parity. As a result, the Higgs can act as a gateway to the origin of heavy Majorana neutrino mass. To assess the LHC reach, a detailed collider study of the same-sign di-leptons plus jets channel is provided. This process is complementary to the existing nuclear and collider searches for lepton number violation and can probe the scale of parity restoration even beyond other direct searches.

Particle physicsPhysics::Instrumentation and DetectorsPhysics beyond the Standard ModelSymmetric modelFOS: Physical sciencesGeneral Physics and AstronomyLepton number violation Higgs Large Hadron Collider left-right symmetryHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)left-right symmetryPhysicsLepton number violationLarge Hadron ColliderPhysicsHigh Energy Physics::PhenomenologyParity (physics)Lepton number3. Good healthMAJORANAHigh Energy Physics - PhenomenologyLepton number violation; Higgs; Large Hadron Collider; left-right symmetryLarge Hadron ColliderHiggs bosonHigh Energy Physics::ExperimentNeutrinoparticle physics ; higgs ; neutrinoHiggHiggsPhysical Review Letters
researchProduct

New high-sensitivity searches for neutrons converting into antineutrons and/or sterile neutrons at the HIBEAM/NNBAR experiment at the European Spalla…

2021

Abstract The violation of baryon number, B , is an essential ingredient for the preferential creation of matter over antimatter needed to account for the observed baryon asymmetry in the Universe. However, such a process has yet to be experimentally observed. The HIBEAM/NNBAR program is a proposed two-stage experiment at the European Spallation Source to search for baryon number violation. The program will include high-sensitivity searches for processes that violate baryon number by one or two units: free neutron–antineutron oscillation ( n → n ̄ ) via mixing, neutron–antineutron oscillation via regeneration from a sterile neutron state ( n → [ n ′ , n ̄ ′ ] → n ̄ ), and neutron disappearan…

baryon number violation; feebly interacting particles; European Spallation Source; baryogenesisPhysics beyond the Standard ModelNuclear TheoryEXPERIMENTAL LIMITfeebly interacting particlesbaryogenesisAntineutron01 natural sciencesSubatomär fysikANTIPROTON ANNIHILATIONn: oscillationSubatomic Physics[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Nuclear ExperimentsterilePhysicsMIRROR MATTERnew physicsanti-nddc:Antimatterbaryon: asymmetryproposed experimentDAMA ANNUAL MODULATIONNuclear and High Energy PhysicsParticle physicsAccelerator Physics and Instrumentation114 Physical sciencesBaryon asymmetrynuclear physics0103 physical sciencesDARK-MATTERmixingNeutronSensitivity (control systems)[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]TRANSITION OPERATORS010306 general physicsbaryon number: violationactivity report010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyAcceleratorfysik och instrumenteringMAJORANA NEUTRINOSsensitivitybaryon number violationBaryogenesisregenerationEuropean Spallation SourceUNIFIED PICTUREB-L SYMMETRYBaryon numberBARYON-NUMBER NONCONSERVATION
researchProduct