0000000000287863

AUTHOR

Hana Sychrová

0000-0001-5967-5019

The role of glycerol transporters in yeast cells in various physiological and stress conditions.

Small and uncharged glycerol is an important molecule for yeast metabolism and osmoadaptation. Using a series of S. cerevisiae BY4741-derived mutants lacking genes encoding a glycerol exporter (Fps1p) and/or importer (Stl1p) and/or the last kinase of the HOG pathway (Hog1p), we studied their phenotypes and various physiological characteristics with the aim of finding new roles for glycerol transporters. Though the triple mutant hog1Δ stl1Δ fps1Δ was viable, it was highly sensitive to various stresses. Our results showed that the function of both Stl1p and Fps1p transporters contributes to the cell ability to survive during the transfer into the state of anhydrobiosis, and that the deletion …

research product

Potassium uptake system Trk2 is crucial for yeast cell viability during anhydrobiosis

Yeasts grow at very different potassium concentrations, adapting their intracellular cation levels to changes in the external environment. Potassium homeostasis is maintained with the help of several transporters mediating the uptake and efflux of potassium with various affinities and mechanisms. In the model yeast Saccharomyces cerevisiae, two uptake systems, Trk1 and Trk2, are responsible for the accumulation of a relatively high intracellular potassium content (200-300 mM) and the efflux of surplus potassium is mediated by the Tok1 channel and active exporters Ena ATPase and Nha1 cation/proton antiporter. Using a series of deletion mutants, we studied the role of individual potassium tra…

research product