0000000000288282
AUTHOR
Michael Hippler
Coordination polymer flexibility leads to polymorphism and enables a crystalline solid-vapour reaction: a multi-technique mechanistic study.
Despite an absence of conventional porosity, the 1D coordination polymer [Ag4 (O2 C(CF2 )2 CF3 )4 (TMP)3 ] (1; TMP=tetramethylpyrazine) can absorb small alcohols from the vapour phase, which insert into AgO bonds to yield coordination polymers [Ag4 (O2 C(CF2 )2 CF3 )4 (TMP)3 (ROH)2 ] (1-ROH; R=Me, Et, iPr). The reactions are reversible single-crystal-to-single-crystal transformations. Vapour-solid equilibria have been examined by gas-phase IR spectroscopy (K=5.68(9)×10(-5) (MeOH), 9.5(3)×10(-6) (EtOH), 6.14(5)×10(-5) (iPrOH) at 295 K, 1 bar). Thermal analyses (TGA, DSC) have enabled quantitative comparison of two-step reactions 1-ROH→1→2, in which 2 is the 2D coordination polymer [Ag4 (O2 …
The Chlamydomonas genome reveals the evolution of key animal and plant functions
Chlamydomonas reinhardtii is a unicellular green alga whose lineage diverged from land plants over 1 billion years ago. It is a model system for studying chloroplast-based photosynthesis, as well as the structure, assembly, and function of eukaryotic flagella (cilia), which were inherited from the common ancestor of plants and animals, but lost in land plants. We sequenced the ∼120-megabase nuclear genome of Chlamydomonas and performed comparative phylogenomic analyses, identifying genes encoding uncharacterized proteins that are likely associated with the function and biogenesis of chloroplasts or eukaryotic flagella. Analyses of the Chlamydomonas genome advance our understanding of the a…
Proteomic analysis of the photosystem I light-harvesting antenna in tomato (Lycopersicon esculentum).
Until now, more genes of the light-harvesting antenna of higher-plant photosystem I (PSI) than proteins have been described. To improve our understanding of the composition of light-harvesting complex I (LHCI) of tomato (Lycopersicon esculentum), we combined one- and two-dimensional (1-D and 2-D, respectively) gel electrophoresis with immunoblotting and tandem mass spectrometry (MS/ MS). Separation of PSI with high-resolution 1-D gels allowed separation of five bands attributed to proteins of LHCI. Immunoblotting with monospecific antibodies and MS/MS analysis enabled the correct assignment of the four prominent bands to light-harvesting proteins Lhcal -4. The fifth band was recognized by o…
CCDC 1044598: Experimental Crystal Structure Determination
Related Article: Iñigo J. Vitórica-Yrezábal, Stefano Libri, Jason R. Loader, Guillermo Mínguez Espallargas, Michael Hippler, Ashleigh J. Fletcher, Stephen P. Thompson, John E. Warren, Daniele Musumeci, Michael D. Ward, Lee Brammer|2015|Chem.-Eur.J.|21|8799|doi:10.1002/chem.201500514
CCDC 1044595: Experimental Crystal Structure Determination
Related Article: Iñigo J. Vitórica-Yrezábal, Stefano Libri, Jason R. Loader, Guillermo Mínguez Espallargas, Michael Hippler, Ashleigh J. Fletcher, Stephen P. Thompson, John E. Warren, Daniele Musumeci, Michael D. Ward, Lee Brammer|2015|Chem.-Eur.J.|21|8799|doi:10.1002/chem.201500514
CCDC 1044597: Experimental Crystal Structure Determination
Related Article: Iñigo J. Vitórica-Yrezábal, Stefano Libri, Jason R. Loader, Guillermo Mínguez Espallargas, Michael Hippler, Ashleigh J. Fletcher, Stephen P. Thompson, John E. Warren, Daniele Musumeci, Michael D. Ward, Lee Brammer|2015|Chem.-Eur.J.|21|8799|doi:10.1002/chem.201500514
CCDC 1044596: Experimental Crystal Structure Determination
Related Article: Iñigo J. Vitórica-Yrezábal, Stefano Libri, Jason R. Loader, Guillermo Mínguez Espallargas, Michael Hippler, Ashleigh J. Fletcher, Stephen P. Thompson, John E. Warren, Daniele Musumeci, Michael D. Ward, Lee Brammer|2015|Chem.-Eur.J.|21|8799|doi:10.1002/chem.201500514