0000000000288330
AUTHOR
Salimeh Kimiagar
Rayleigh-instability-driven dewetting of thin Au and Ag films on indium-tin-oxide surface under nanosecond laser irradiations
Investigations have been carried out on laser-beam-induced nanoparticle (NP) formation in thin (5 nm) Au and Ag films on indium-tin-oxide substrate. After the irradiation the films were observed to break-up into NPs through a dewetting mechanism. This mechanism was investigated as a Rayleigh-instability- driven process. In fact, for each used laser fluence, the resulting Au and Ag NPs' mean size and surface-to-surface mean distance were quantified and correlated between them in the framework of the Rayleigh-instability theory showing an excellent agreement. © The Institution of Engineering and Technology 2013.
Nanostructuring thin Au films on transparent conductive oxide substrates
Fabrication processes of Au nanostructures on indium-tin-oxide (ITO) surface by simple, versatile, and low-cost bottom-up methodologies are investigated in this work. A first methodology exploits the patterning effects induced by nanosecond laser irradiations on thin Au films deposited on ITO surface. We show that after the laser irradiations, the Au film break-up into nanoclusters whose mean size and surface density are tunable by the laser fluence. A second methodology exploits, instead, the patterning effects of standard furnace thermal processes on the Au film deposited on the ITO. We observe, in this case, a peculiar shape evolution from pre-formed nanoclusters during the Au deposition…
Formation and Evolution of Nanoscale Metal Structures on ITO Surface by Nanosecond Laser Irradiations of Thin Au and Ag Films
The effect of nanosecond laser irradiations on 5 nm thick sputter-deposited Au and Ag films on Indium-Tin-Oxide surface is investigated by atomic force microscopy (AFM) and scanning electron microscopy (SEM). After 500, 750, and 1000 mJ/cm 2 fluence irradiations, the breakup of the Au and Ag films into nanoscale islands is observed as a consequence of fast melting and solidification processes. The mean nanoparticles size and surface density are quantified, as a function of the laser fluence, by the AFM and SEM analyses. In particular, the comparison between the Au and Ag islands reveals the formation of larger islands in the case of Ag for each fixed fluence. The mechanism of the nanoscale …