0000000000288837

AUTHOR

Anuliina Putkinen

0000-0002-6034-7837

showing 2 related works from this author

Integrating Decomposers, Methane-Cycling Microbes and Ecosystem Carbon Fluxes Along a Peatland Successional Gradient in a Land Uplift Region

2021

AbstractPeatlands are carbon dioxide (CO2) sinks that, in parallel, release methane (CH4). The peatland carbon (C) balance depends on the interplay of decomposer and CH4-cycling microbes, vegetation, and environmental conditions. These interactions are susceptible to the changes that occur along a successional gradient from vascular plant-dominated systems to Sphagnum moss-dominated systems. Changes similar to this succession are predicted to occur from climate change. Here, we investigated how microbial and plant communities are interlinked with each other and with ecosystem C cycling along a successional gradient on a boreal land uplift coast. The gradient ranged from shoreline to meadows…

DYNAMICSPeatecosystem respirationmethane emissionSphagnumCOMMUNITY COMPOSITIONDecomposerCO2 EXCHANGEbakteeritmethanotrophsmethanogensturvemaatBogFUNGALBiomass (ecology)geography.geographical_feature_categoryEcologybiologyEcologyFUNCTIONAL TYPEShiilen kiertofood and beveragesactinobacteriaFEN ECOSYSTEMprimary paludification1181 Ecology evolutionary biologymicrobial communityEcosystem respirationsienetWATER-LEVEL DRAWDOWNTERMmetaaniEnvironmental ChemistryEcosystembiomassa (ekologia)PLANT-COMMUNITIESVEGETATION SUCCESSION1172 Environmental sciencesEcology Evolution Behavior and Systematicsgeographymicrobial biomassbiology.organism_classificationpeatland developmentmaankohoaminenmikrobistoMicrobial population biologyACTINOBACTERIAL COMMUNITIEShiilinielutEnvironmental sciencefungipeatland development.Ecosystems
researchProduct

New insight to the role of microbes in the methane exchange in trees: evidence from metagenomic sequencing

2021

Methane (CH4) exchange in tree stems and canopies and the processes involved are among the least understood components of the global CH4 cycle. Recent studies have focused on quantifying tree stems as sources of CH4 and understanding abiotic CH4 emissions in plant canopies, with the role of microbial in situ CH4 formation receiving less attention. Moreover, despite initial reports revealing CH4 consumption, studies have not adequately evaluated the potential of microbial CH4 oxidation within trees. In this paper, we discuss the current level of understanding on these processes. Further, we demonstrate the potential of novel metagenomic tools in revealing the involvement of microbes in the C…

0106 biological sciences0301 basic medicinePhysiologyPlant Science01 natural sciencesmetaaniMethaneTreesbakteerit03 medical and health scienceschemistry.chemical_compoundboreal forestsUltraviolet radiationAbiotic componentbiologyNorwayEcologyAtmospheric methaneTaigakasvifysiologiapuut (kasvit)Picea abiesgenomiikka15. Life on landbiology.organism_classificationmethanogenic archaeametsätplant microbiometree030104 developmental biologymethane exchangeboreaalinen vyöhykemikrobistochemistry13. Climate actionMetagenomicsEnvironmental scienceaineiden kiertoMetagenomicsmethanotrophic bacteriaMethanearkeonit010606 plant biology & botanycaptured metagenomicsNew Phytologist
researchProduct