0000000000288838
AUTHOR
Krista Peltoniemi
Integrating Decomposers, Methane-Cycling Microbes and Ecosystem Carbon Fluxes Along a Peatland Successional Gradient in a Land Uplift Region
AbstractPeatlands are carbon dioxide (CO2) sinks that, in parallel, release methane (CH4). The peatland carbon (C) balance depends on the interplay of decomposer and CH4-cycling microbes, vegetation, and environmental conditions. These interactions are susceptible to the changes that occur along a successional gradient from vascular plant-dominated systems to Sphagnum moss-dominated systems. Changes similar to this succession are predicted to occur from climate change. Here, we investigated how microbial and plant communities are interlinked with each other and with ecosystem C cycling along a successional gradient on a boreal land uplift coast. The gradient ranged from shoreline to meadows…
Exploring the mechanisms by which reindeer droppings induce fen peat methane production
Abstract Peatlands, especially fens, are known to emit methane. Reindeer (Rangifer tarandus) use mires mainly as spring and summer pastures. In this work we observed that adding reindeer droppings to fen peat increased the potential methane production by 40%. This became apparent when droppings originating from reindeer kept in pen or pasture in winter were added to methanogenic fen peat samples. The droppings introduced Methanobacteriaceae (Methanobrevibacter; > 90% of the mcrA MiSeq reads) to the peat, which was originally populated by Methanosarcinaceae, Methanosaetaceae, Methanoregulaceae, Methanobacteriaceae, Methanomassiliicoccaceae, Methanocellaceae and Methanomicrobiaceae. The origi…