0000000000289153

AUTHOR

Yvonne Leifels

showing 5 related works from this author

ASY-EOS experiment at GSI

2012

The elliptic-flow ratio of neutrons with respect to protons in reactions of neutron rich Heavy-Ion at intermediate energies has been recently proposed as an observable sensitive to the strength of the symmetry term in the nuclear equation of state (EOS) at supra-saturation densities. The recent results obtained from the existing FOPI/LAND data for 197Au+197Au collisions at 400 MeV/nucleon in comparison with the UrQMD model allowed a first estimate of the symmetry term of the EOS but suffer from a considerable statistical uncertainty. In order to obtain an improved data set for Au+Au collisions and to extend the study to other systems, a new experiment was carried out at the GSI laboratory b…

PhysicssezelePhysicsQC1-999Nuclear Theorysymmetry energyObservableNuclear equation of state[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]nuclear equation of stateSymmetry (physics)Term (time)Nuclear physicsPhysics and Astronomy (all)nucleus-nucleus collisionsNeutronNucleonNuclear ExperimentEPJ Web of Conferences
researchProduct

Probing the Merits of Different Event Parameters for the Identification of Light Charged Particles in CHIMERA CsI(Tl Detectors With Digital Pulse Sha…

2013

We investigated the merits of different event parameters in the identification of Light Charged Particles (LCPs) with CsI(Tl) scintillators read out by photodiodes at high incident energy (400 MeV/u). This investigation is made possible by digital signal processing the output signals. As in the conventional analogue case, the digitized signals allow the discrimination of light charged particles by computing the fast and slow components. In addition other identification parameters as the rise time of the output pulses of the CsI(Tl) come out nearly for free. Aim of this paper is the investigation of novel identification plots and the probe of their merits, in particular at relativistic energ…

Nuclear and High Energy PhysicsPhysics::Instrumentation and Detectorsintermediate energy nuclear physicpulse shape analysiScintillatorParticle identificationlaw.inventionOpticslawElectrical and Electronic EngineeringDigital signal processingPhysicsonline digital signal processingSignal processingsezeleCsI(Tl) scintillatorsbusiness.industrypulse shape analysisDetectorCsI(Tl) scintillatorCsI(Tl) scintillators; intermediate energy nuclear physics; online digital signal processing; particle identification; pulse shape analysisCsI(Tl) scintillators; intermediate energy nuclear physics; online digital signal processing; particle identification; pulse shape analysis; Electrical and Electronic Engineering; Nuclear Energy and Engineering; Nuclear and High Energy PhysicsCharged particlePhotodiodeintermediate energy nuclear physicsNuclear Energy and EngineeringRise timeparticle identificationbusinessnuclear physics; heavy-ions; digital signal processing; scintillation detectors
researchProduct

The FIRST experiment at GSI

2012

The FIRST (Fragmentation of Ions Relevant for Space and Therapy) experiment at the SIS accelerator of GSI laboratory in Darmstadt has been designed for the measurement of ion fragmentation cross-sections at different angles and energies between 100 and 1000 MeV/nucleon. Nuclear fragmentation processes are relevant in several fields of basic research and applied physics and are of particular interest for tumor therapy and for space radiation protection applications. The start of the scientific program of the FIRST experiment was on summer 2011 and was focused on the measurement of 400 MeV/nucleon 12C beam fragmentation on thin (8 mm) graphite target. The detector is partly based on an alread…

Nuclear and High Energy PhysicsIon beamPhysics::Instrumentation and Detectorsmedicine.medical_treatmentNuclear physics[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]ScintillatorElementary-particleFIRST7. Clean energy01 natural sciencesParticle detectorWire chamberNuclear physicsDipole magnetFragmentationPARTICLE THERAPYhadrontherapy; fragmentation; nuclear physics; elementary-particle; instrumentation; experimental methodsHadrontherapy0103 physical sciencesmedicineNeutron detectionddc:530Gaseous detectorION-BEAM010306 general physicsNuclear ExperimentDETECTORInstrumentationGEANT4PARTICLE THERAPY; FLUKA CODE; ION-BEAM; FRAGMENTATION; BENCHMARKING; RADIOTHERAPY; TRANSPORT; DETECTOR; GEANT4; FIRSTPhysicsParticle therapyTime projection chamber010308 nuclear & particles physicsExperimental methodsDetectorScintillatorTRANSPORTSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)Hadrontherapy; Fragmentation; Nuclear physics; Elementary-particle; Experimental methods; InstrumentationFLUKA CODEBENCHMARKINGElementary-particle; Experimental methods; Fragmentation; Hadrontherapy; Instrumentation; Nuclear physics; Instrumentation; Nuclear and High Energy PhysicsRADIOTHERAPY
researchProduct

The dipole response of nuclei with large neutron excess

2003

The dipole response of neutron-rich nuclei in the mass range from A = 10 to A = 22 and with mass to charge ratios of 2.5 to 2.8 has been invesitigated experimentally utilizing electromagnetic excitation in heavy-ion collisions at beam energies around 600 MeV/u.

PhysicsNuclear reactionDipoleNeutron emissionNuclear TheoryNeutronInelastic scatteringAtomic physicsNuclear ExperimentSpin (physics)ExcitationRadioactive decay
researchProduct

FIRST experiment: Fragmentation of Ions Relevant for Space and Therapy

2013

International audience; Nuclear fragmentation processes are relevant in different fields of basic research and applied physics and are of particular interest for tumor therapy and for space radiation protection applications. The FIRST (Fragmentation of Ions Relevant for Space and Therapy) experiment at SIS accelerator of GSI laboratory in Darmstadt, has been designed for the measurement of different ions fragmentation cross sections at different energies between 100 and 1000 MeV/nucleon. The experiment is performed by an international collaboration made of institutions from Germany, France, Italy and Spain. The experimental apparatus is partly based on an already existing setup made of the …

HistorySilicon detectorApplied physicsPhysics::Instrumentation and DetectorsScintillator[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]7. Clean energy01 natural sciencesSpace radiation030218 nuclear medicine & medical imagingEducationIonExperimental apparatuNuclear physics03 medical and health sciencesPhysics and Astronomy (all)0302 clinical medicineFragmentation (mass spectrometry)0103 physical sciencesNeutron detectionddc:530Silicon Vertex DetectorIon010306 general physicsNuclear ExperimentScintillation counterRadiation protectionPhysicsDetectorNuclear fragmentationComputer Science ApplicationsInternational collaborationProtection applicationMagnet[PHYS.PHYS.PHYS-MED-PH]Physics [physics]/Physics [physics]/Medical Physics [physics.med-ph]Scientific programInternational cooperationNucleonInteraction region
researchProduct