0000000000289239
AUTHOR
Ornella Pantano
General-relativistic approach to the nonlinear evolution of collisionless matter.
A new general-relativistic algorithm is developed to study the nonlinear evolution of scalar (density) perturbations of an irrotational collisionless fluid up to shell crossing, under the approximation of neglecting the interaction with tensor (gravitational-wave) perturbations. The dynamics of each fluid element is separately followed in its own inertial rest frame by a system of twelve coupled first-order ordinary differential equations, which can be further reduced to six under very general conditions. Initial conditions are obtained in a cosmological framework, from linear theory, in terms of a single gauge-invariant potential. Physical observables, which are expressed in the Lagrangian…
A relativistic approach to gravitational instability in the expanding Universe: second-order Lagrangian solutions
A Lagrangian relativistic approach to the non--linear dynamics of cosmological perturbations of an irrotational collisionless fluid is considered. Solutions are given at second order in perturbation theory for the relevant fluid and geometric quantities and compared with the corresponding ones in the Newtonian approximation. Specifically, we compute the density, the volume expansion scalar, the shear, the ``electric" part, or tide, and the ``magnetic" part of the Weyl tensor. The evolution of the shear and the tide beyond the linear regime strongly depends on the ratio of the characteristic size of the perturbation to the cosmological horizon distance. For perturbations on sub--horizon scal…
Non-Linear Relativistic Evolution of Cosmological Perturbations in Irrotational Dust
General Relativistic Dynamics of Irrotational Dust: Cosmological Implications
The non--linear dynamics of cosmological perturbations of an irrotational collisionless fluid is analyzed within General Relativity. Relativistic and Newtonian solutions are compared, stressing the different role of boundary conditions in the two theories. Cosmological implications of relativistic effects, already present at second order in perturbation theory, are studied and the dynamical role of the magnetic part of the Weyl tensor is elucidated.