0000000000289243
AUTHOR
E. Shablonin
Thermal annealing of radiation damage produced by swift 132Xe ions in MgO single crystals
Abstract The annealing kinetics of the electron-type F+ and F color centers in highly pure MgO single crystals irradiated by 0.23-GeV 132Xe ions with fluences covering three orders of magnitude (Φ = 5 × 1011 –3.3 × 1014 ions/cm2) are studied experimentally via dependence of the optical absorption on preheating temperature. The annealing data are analyzed in terms of the diffusion-controlled bimolecular reactions between F-type centers and complementary interstitial oxygen ions. The behavior of the main kinetic parameters – the migration energies and pre-exponential factors – for different irradiation fluences is discussed and compared with that for other wide-gap binary materials from previ…
Evidence for the formation of two types of oxygen interstitials in neutron-irradiated α-Al2O3 single crystals
Authors are indebted to R. Vila for stimulating discussions. Tis work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014–2018 and 2019–2020 under Grant agreement No 633053. The views and opinions expressed herein do not necessarily refect those of the European Commission. In addition, the research leading to these results has received funding from the Latvian grant LZP-2018/1-0147 (EV). Institute of Solid State Physics, University of Latvia as the Center of Excellence is supported through the Framework Program for European universities Union Horizon 2020, H2020-WIDESPREAD-01–2016–2017-TeamingP…
Influence of complex impurity centres on radiation damage in wide-gap metal oxides
Different mechanisms of radiation damage of wide-gap metal oxides as well as a dual influence of impurity ions on the efficiency of radiation damage have been considered on the example of binary ionic MgO and complex ionic–covalent $Lu_{3}Al_{5}O_{12}$ single crystals. Particular emphasis has been placed on irradiation with $\sim$2 GeV heavy ions ($^{197}Au, ^{209}Bi, ^{238}U$, fluence of 10$^{12}$ ions/cm$^{2}$) providing extremely high density of electronic excitations within ion tracks. Besides knock-out mechanism for Frenkel pair formation, the additional mechanism through the collapse of mobile discrete breathers at certain lattice places (e.g., complex impurity centres) leads to the c…
The Two Types of Oxygen Interstitials in Neutron‐Irradiated Corundum Single Crystals: Joint Experimental and Theoretical Study
About complexity of the 2.16-eV absorption band in MgO crystals irradiated with swift Xe ions
Abstract The precise study of the accumulation and subsequent thermal annealing of the defects responsible for the complex absorption band around 2.16 eV, being under discussion in the literature for a long time, has been performed in highly pure MgO single crystals exposed to 0.23-GeV 132Xe ions with a fluence of Φ = 5 × 1011 − 3.3 × 1014 ions/cm2. Three Gaussian components with the maxima at 2.16, 2.02 and 2.40 eV have been considered as a measure of so-called D1, D2 and D3 defects. Similar to the F and F+ centers, the concentration of these defects increases at high fluences without saturation marks, thus confirming their radiation-induced nature (involvement of novel Frenkel defects). T…
Thermal annealing and transformation of dimer F centers in neutron-irradiated Al2O3 single crystals
This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission. In addition, the research leading to these results has received funding from the Estonian Research Council grant (PUT PRG619).
Luminescence characteristics of magnesium aluminate spinel crystals of different stoichiometry
We are grateful to Drs E. Vasil’chenko and A. Maaroos for the help with experiments and useful discussions. This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission. In addition, the research leading to these results has received funding from the Estonian Research Council Institutional Research Funding IUT02-26.
Atomic, electronic and magnetic structure of an oxygen interstitial in neutron-irradiated Al2O3 single crystals
This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under Grant Agreement No. 633053 and Enabling Research project: ENR-MFE19.ISSP-UL-02 “Advanced experimental and theoretical analysis of defect evolution and structural disordering in optical and dielectric materials for fusion application”. The views and opinions expressed herein do not necessarily reflect those of the European Commission. In addition, the research leading to these results has received funding from the Estonian Research Council grant (PUT PRG619).
Comparison of the F-type center thermal annealing in heavy-ion and neutron irradiated Al2O3 single crystals
Abstract The optical absorption and thermally stimulated luminescence of Al2O3 (sapphire) single crystals irradiated with swift heavy ions (SHI) 238U with energy 2.4 GeV is studied with the focus on the thermal annealing of the F-type centers in a wide temperature range of 400–1500 K. Its theoretical analysis allows us to obtain activation energies and pre-exponentials of the interstitial oxygen ion migration, which recombine with both types of immobile electron centers (F and F+ centers). A comparison of these kinetics parameters with literature data for a neutron-irradiated sapphire shows their similarity and thus supports the use of SHI-irradiation for modeling the neutron irradiation.
Excitation of different chromium centres by synchrotron radiation in MgO:Cr single crystals
The excitation spectra for the emissions of chromium-containing centres have been measured at 10 K using synchrotron radiation of 4–32 eV in MgO single crystals with different content of Cr$^{3+}$ (5–850 ppm) and Ca$^{2+}$ impurity ions. Both virgin crystals and the samples preliminarily irradiated with x-rays at 295 K have been studied. The role of complex chromium centres containing two Cr$^{3+}$ and a cation vacancy (sometimes nearby a Ca$^{2+}$ ion) on the luminescence processes and the transformation/creation of structural defects has been analysed. Such anharmonic complex centres could serve as the seeds for the creation of 3D defects that facilitate the cracking and brittle destructi…
Distinctive features of diffusion-controlled radiation defect recombination in stoichiometric magnesium aluminate spinel single crystals and transparent polycrystalline ceramics
This work has been performed within the framework of the EUROfusion Enabling Research project: ENR-MFE19.ISSP-UL-02 “Advanced experimental and theoretical analysis of defect evolution and structural disordering in optical and dielectric materials for fusion application”. The views and opinions expressed herein do not necessarily reflect those of the European Commission. Research of A.L, E.F.,, V.S and E.S has been partly supported by the Estonian Research Council grant (PUT PRG619); has been also carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014–2018 and 2019–2020 under grant agreement No 633053. The …
Creation and thermal annealing of structural defects in neutron-irradiated MgAl 2 O 4 single crystals
Abstract Several novel hole-type defects (a hole localized at a regular oxygen ion near a negatively charged structural defect) have been revealed in fast neutron irradiated MgAl2O4 crystals using the EPR method. The pulse annealing of the EPR signal of these centers was compared to that of radiation induced optical absorption in the same crystals. Taking into account the determined models of V1, V2 and V22 paramagnetic centers, the tentative scenario of the thermal annealing process of neutron-induced defects (hole-type and complementary electron F-type ones) is proposed. In addition, one more paramagnetic hole center consisting of an Al|Mg as-grown antisite defect near an aluminum vacancy…
Fast-neutron-induced and as-grown structural defects in magnesium aluminate spinel crystals with different stoichiometry
Abstract Several hole-type paramagnetic defects (a hole localized at a regular oxygen ion near charged structural defect/defects) have been revealed in fast-neutron-irradiated MgO⋅2.5Al2O3 single crystals using the EPR method. Three of them (a dominant V1 and small amount of V2 and V22) were recently revealed in a neutron-irradiated stoichiometric MgAl2O4, while a novel V4 center, ascribed to a hole in a form of O− ion nearby a complex of a magnesium vacancy and a positively charged antisite defect (V4 ≡ O–‑VMg‑Al|Mg), was created by fast neutrons only in a nonstoichiometric single crystal. The pulse annealing of the EPR signal of these centers was compared to that of radiation induced opti…