0000000000289333

AUTHOR

Jarno Kansanaho

Software Framework for Tribotronic Systems

Increasing the capabilities of sensors and computer algorithms produces a need for structural support that would solve recurring problems. Autonomous tribotronic systems self-regulate based on feedback acquired from interacting surfaces in relative motion. This paper describes a software framework for tribotronic systems. An example of such an application is a rolling element bearing (REB) installation with a vibration sensor. The presented plug-in framework offers functionalities for vibration data management, feature extraction, fault detection, and remaining useful life (RUL) estimation. The framework was tested using bearing vibration data acquired from NASA's prognostics data repositor…

research product

Näkymänhallintatekniikat 3D-grafiikkamoottoreissa

Tässä tutkielmassa käsittelen näkymänhallintatekniikoita 3D-grafiikkamoottoreissa. Näkymä muodostetaan monikulmiomalleista. Näkymänhallinta kuvaa algoritmit ja menetelmät, joiden tarkoituksena on valita kyseisen maailman kaikista monikulmioista ne, jotka pitää piirtää katsojan lokaation ja orientaation perusteella. Renderöitäessä satojatuhansia polygoneja käyttäen lukuisia efektejä käytettävä näkymänhallintatekniikka on tärkeässä asemassa. Tutkielmassa on tarkoitus esittää eri näkymänhallintatekniikoiden toteutuksia, osoittaa millaisille näkymille mikäkin menetelmä on paras ja verrata menetelmien suorituskykyä.

research product

Hybrid vibration signal monitoring approach for rolling element bearings

New approach to identify different lifetime stages of rolling element bearings, to improve early bearing fault detection, is presented. We extract characteristic features from vibration signals generated by rolling element bearings. This data is first pre-labelled with an unsupervised clustering method. Then, supervised methods are used to improve the labelling. Moreover, we assess feature importance with each classifier. From the practical point of view, the classifiers are compared on how early emergence of a bearing fault is being suggested. The results show that all of the classifiers are usable for bearing fault detection and the importance of the features was consistent. peerReviewed

research product