0000000000289358

AUTHOR

Christian F. Mang

showing 9 related works from this author

Inhibition of human detrusor contraction by a urothelium derived factor.

2003

Stimulating muscarinic receptors in pig bladder urothelium causes the release of a diffusable factor that inhibits contractions of the underlying detrusor muscle. We investigated whether the contractions of human detrusor strips elicited by the muscarinic agonist carbachol, electrical field stimulation, KCl or the neurokinin receptor agonist neurokinin A are affected by the urothelium.Paired intact and urothelium denuded muscle strips were placed in modified gassed Tyrode's solution at 37C. Cumulative concentration-response curves to carbachol or KCl were constructed. In other tissues the strips were stimulated electrically (1 to 40 Hz) with trains of square wave pulses 20 seconds in durati…

AgonistDetrusor muscleMalemedicine.medical_specialtyCarbacholmedicine.drug_classUrologyNeurokinin APig bladderMuscarinic Agonistsurologic and male genital diseasesMuscarinic agonistPotassium Chloridechemistry.chemical_compoundInternal medicineCulture TechniquesMuscle HypertoniamedicineHumansUrotheliumAgedDose-Response Relationship Drugurogenital systembusiness.industryTissue ExtractsMuscle SmoothMiddle Agedfemale genital diseases and pregnancy complicationsElectric StimulationStimulation ChemicalEndocrinologymedicine.anatomical_structurechemistryCarbacholFemaleNeurokinin Amedicine.symptomUrotheliumbusinessmedicine.drugMuscle contractionMuscle ContractionThe Journal of urology
researchProduct

Cyclooxygenase 2-selective and nonselective nonsteroidal anti-inflammatory drugs induce oxidative stress by up-regulating vascular NADPH oxidases.

2008

Cyclooxygenase 2-selective inhibitors (coxibs) and nonselective nonsteroidal anti-inflammatory drugs (NSAIDs) are associated with an increase in cardiovascular events. The current study was designed to test the effect of coxibs and nonselective NSAIDs on vascular superoxide and nitric oxide (NO) production. mRNA expression of endothelial NO synthase (eNOS) and of the vascular NADPH oxidases was studied in spontaneously hypertensive rats (SHR) and in human endothelial cells. The expression of Nox1, Nox2, Nox4, and p22phox was increased markedly by the nonselective NSAIDs diclofenac or naproxen and moderately by rofecoxib or celecoxib in the aorta and heart of SHR. The up-regulation of NADPH …

AdultMalePharmacologychemistry.chemical_compoundEnosRats Inbred SHRAnimalsHumansPharmacologyNADPH oxidasebiologyCyclooxygenase 2 InhibitorsNitrotyrosineAnti-Inflammatory Agents Non-SteroidalNOX4NADPH Oxidasesbiology.organism_classificationRatsUp-RegulationOxidative StresschemistryCyclooxygenase 2NOX1Apocynincardiovascular systembiology.proteinMolecular MedicineFemaleP22phoxEndothelium VascularPeroxynitriteThe Journal of pharmacology and experimental therapeutics
researchProduct

Pentaerithrityl tetranitrate improves angiotensin II induced vascular dysfunction via induction of heme oxygenase-1

2010

The organic nitrate pentaerythritol tetranitrate is devoid of nitrate tolerance, which has been attributed to the induction of the antioxidant enzyme heme oxygenase (HO)-1. With the present study, we tested whether chronic treatment with pentaerythritol tetranitrate can improve angiotensin II–induced vascular oxidative stress and dysfunction. In contrast to isosorbide-5 mononitrate (75 mg/kg per day for 7 days), treatment with pentaerythritol tetranitrate (15 mg/kg per day for 7 days) improved the impaired endothelial and smooth muscle function and normalized vascular and cardiac reactive oxygen species production (mitochondria, NADPH oxidase activity, and uncoupled endothelial NO synthase)…

medicine.medical_specialtyAntioxidantNitric Oxide Synthase Type IIImedicine.medical_treatmentVasodilator AgentsBlotting WesternFluorescent Antibody TechniquePentaerythritol tetranitratemedicine.disease_causePentaerythritolArticlechemistry.chemical_compoundInternal medicineRats Inbred SHRInternal MedicinemedicineAnimalsPentaerythritol TetranitrateEndothelial dysfunctionchemistry.chemical_classificationReactive oxygen speciesAnalysis of VarianceAngiotensin IImedicine.diseaseAngiotensin IIMitochondriaRatsHeme oxygenaseOxidative StressEndocrinologychemistryHeminEndothelium VascularReactive Oxygen SpeciesOxidative stressHeme Oxygenase-1
researchProduct

Effects of K(ATP) channel modulators on acetylcholine release from guinea-pig isolated atria and small intestine.

2002

The effects of K(ATP) channel blockers (glibenclamide, HMR 1883, HMR 1372) and openers (cromakalim, pinacidil, diazoxide) on the electrically-evoked (5 Hz) release of [(3)H]acetylcholine were studied in isolated guinea-pig atria and myenteric plexus-longitudinal muscle preparations which had been preincubated with [(3)H]choline. Atria: Cromakalim (0.3 microM and 1 microM), pinacidil (10 microM) and diazoxide (30 microM) significantly reduced the stimulation-evoked release of [(3)H]acetylcholine. The inhibition produced by cromakalim and pinacidil was prevented by 1 microM of either HMR 1883, HMR 1372 or glibenclamide. The blockers alone significantly increased the release at concentrations …

MaleCromakalimPotassium ChannelsGuinea PigsNeuromuscular JunctionMyenteric PlexusPharmacologyIn Vitro Techniqueschemistry.chemical_compoundGlyburideIntestine SmallmedicineDiazoxidePotassium Channel BlockersAnimalsChannel blockerHeart AtriaPharmacologySulfonamidesPinacidilDiazoxideThioureaPotassium channel blockerMuscle SmoothGeneral Medicinemusculoskeletal systemAtrial FunctionMyocardial ContractionHMR 1883Potassium channelAcetylcholinechemistryAnesthesiaPinacidilcardiovascular systemFemaleCromakalimAcetylcholinemedicine.drugNaunyn-Schmiedeberg's archives of pharmacology
researchProduct

Modulation of acetylcholine release in the guinea-pig trachea by the nitric oxide donor, S-nitroso-N-acetyl-DL-penicillamine (SNAP)

2000

The effects of the nitric oxide (NO) donor S-nitroso-N-acetyl-DL-penicillamine (SNAP) and the NO synthase inhibitor L-N(G)-nitroarginine (L-NOARG) on the electrically evoked [(3)H]-acetylcholine release were studied in an epithelium-free preparation of guinea-pig trachea that had been preincubated with [(3)H]-choline. SNAP (100 and 300 microM) caused small but significant increases of the electrically evoked [(3)H]-acetylcholine release (121+/-4% and 124+/-10% of control). Resting outflow of [(3)H]-ACh was not affected by SNAP. The increase by SNAP was abolished by the specific inhibitor of soluble guanylyl cyclase, 1H-[1,2,4]oxadiazolo[4,3-alpha]quinoxalin-1-one (ODQ, 1 microM). The facili…

Pharmacologymedicine.medical_specialtybiologySnapNitric oxideNitric oxide synthasechemistry.chemical_compoundNitroarginineEndocrinologychemistryEnzyme inhibitorCapsaicinInternal medicinemedicinebiology.proteinSoluble guanylyl cyclaseAcetylcholinemedicine.drugBritish Journal of Pharmacology
researchProduct

Differential effects of anandamide on acetylcholine release in the guinea-pig ileum mediated via vanilloid and non-CB1 cannabinoid receptors

2001

The effects of anandamide on [3H]-acetylcholine release and muscle contraction were studied on the myenteric plexus-longitudinal muscle preparation of the guinea-pig ileum preincubated with [3H]-choline. Anandamide increased both basal [3H]-acetylcholine release (pEC50 6.3) and muscle tone (pEC50 6.3). The concentration-response curves for anandamide were shifted to the right by 1 μM capsazepine (pKB 7.5 and 7.6), and by the combined blockade of NK1 and NK3 tachykinin receptors with the antagonists CP99994 plus SR142801 (each 0.1 μM). The CB1 and CB2 receptor antagonists, SR141716A (1 μM) and SR144528 (30 nM), did not modify the facilitatory effects of anandamide. Anandamide inhibited the e…

Pharmacologymedicine.medical_specialtyCannabinoid receptormedicine.medical_treatmentTRPV1AnandamideMuscarinic agonistchemistry.chemical_compoundEndocrinologychemistryInternal medicinemedicineCannabinoidCapsazepineTachykinin receptorAcetylcholinemedicine.drugBritish Journal of Pharmacology
researchProduct

Antiatherosclerotic Effects of Small-Molecular-Weight Compounds Enhancing Endothelial Nitric-Oxide Synthase (eNOS) Expression and Preventing eNOS Unc…

2008

Many cardiovascular diseases are associated with reduced levels of bioactive nitric oxide (NO) and an uncoupling of oxygen reduction from NO synthesis in endothelial NO synthase (eNOS uncoupling). In human endothelial EA.hy 926 cells, two small-molecular-weight compounds with related structures, 4-fluoro-N-indan-2-yl-benzamide (CAS no. 291756-32-6; empirical formula C16H14FNO; AVE9488) and 2,2-difluoro-benzo[1,3]dioxole-5-carboxylic acid indan-2-ylamide (CAS no. 450348-85-3; empirical formula C17H13F2NO3; AVE3085), enhanced eNOS promoter activity in a concentration-dependent manner; with the responsible cis-element localized within the proximal 263 base pairs of the promoter region. RNA int…

MaleNeointimamedicine.medical_specialtyNitric Oxide Synthase Type IIINitric Oxide Synthase Type IINitric OxideProtective AgentsUmbilical veinCell LineNitric oxideMicechemistry.chemical_compoundApolipoproteins EEnosInternal medicinemedicineAnimalsHumansBenzodioxolesRNA MessengerAortaMice KnockoutPharmacologychemistry.chemical_classificationSp1 transcription factorReactive oxygen speciesGene knockdownbiologyEndothelial CellsAtherosclerosisbiology.organism_classificationVasoprotectiveMice Inbred C57BLMolecular WeightEndocrinologychemistryBenzamidesIndansMolecular MedicineJournal of Pharmacology and Experimental Therapeutics
researchProduct

Midostaurin upregulates eNOS gene expression and preserves eNOS function in the microcirculation of the mouse

2005

Nitric oxide (NO) derived from endothelial NO synthase (eNOS) is a powerful vasodilator and possesses vasoprotective effects. Therefore, augmentation of eNOS expression and -activity by pharmacological means could provide protection against cardiovascular disease. However, this concept has been questioned recently, because in several disease models, eNOS upregulation was associated with a dysfunctional enzyme (referred to as eNOS uncoupling). In contrast, the present study demonstrates that an eNOS gene expression-enhancing compound with additional protein kinase C (PKC) inhibitory properties can upregulate eNOS while preserving its enzymatic function. Apolipoprotein E-knockout mice were tr…

MaleCancer ResearchNitric Oxide Synthase Type IIIPhysiologyClinical BiochemistryNitric Oxide Synthase Type IIBiologyPharmacologyBiochemistryNitric oxideMicechemistry.chemical_compoundApolipoproteins EEnosmedicineAnimalsStaurosporineRNA MessengerMidostaurinAortaNitritesProtein kinase CMice KnockoutNitratesMicrocirculationStaurosporinebiology.organism_classificationVasoprotectiveVasodilationNitric oxide synthaseBiochemistrychemistryEnzyme Inductionbiology.proteinNitric Oxide SynthaseReactive Oxygen SpeciesIntravital microscopymedicine.drugNitric Oxide
researchProduct

Modulation by NO of acetylcholine release in the ileum of wild-type and NOS gene knockout mice.

2002

Nitric oxide (NO) inhibits the release of acetylcholine and cholinergic contractions in the small intestine of several species, but no information is available about the mouse ileum. This study examines the effects of NO on the electrically evoked release of [3H]acetylcholine and smooth muscle contraction in myenteric plexus-longitudinal muscle preparations of wild-type mice and of neuronal NO synthase (nNOS) and endothelial NOS (eNOS) knockout mice. The NOS inhibitor N G-nitro-l-arginine (l-NNA) and the guanylyl cyclase inhibitor 1 H-[1,2,4]oxadiazolo[4,3-α]quinoxalin-1-one (ODQ) concentration dependently increased the evoked [3H]acetylcholine release and cholinergic contractions in prepa…

Malemedicine.medical_specialtyNitric Oxide Synthase Type IIIPhysiologyNitric Oxide Synthase Type IIIleumNitric Oxide Synthase Type IBiologyIn Vitro TechniquesNitric OxideNitroarginineNitric oxidechemistry.chemical_compoundMiceIleumPhysiology (medical)Internal medicineQuinoxalinesmedicineAnimalsNitric Oxide DonorsEnzyme InhibitorsGene knockoutMice KnockoutOxadiazolesHepatologyPenicillamineGastroenterologyNitric Oxide Synthase Type IIISmall intestineAcetylcholineElectric StimulationNitric oxide synthaseEndocrinologymedicine.anatomical_structurechemistrybiology.proteinCholinergicNitric Oxide SynthaseGastrointestinal MotilityAcetylcholinemedicine.drugAmerican journal of physiology. Gastrointestinal and liver physiology
researchProduct