0000000000289491

AUTHOR

Cornelia Kiewert

showing 2 related works from this author

Role of GABAergic antagonism in the neuroprotective effects of bilobalide

2006

Bilobalide, a constituent of Ginkgo biloba, has neuroprotective properties. Its mechanism of action is unknown but it was recently found to block GABA(A) receptors. The goal of this study was to test the potential role of a GABAergic mechanism for the neuroprotective activity of bilobalide. In rat hippocampal slices exposed to NMDA, release of choline indicates breakdown of membrane phospholipids. NMDA-induced choline release was almost completely blocked in the presence of bilobalide (10 microM) and under low-chloride conditions. Bicuculline (100 microM), a competitive antagonist at GABA(A) receptors, reduced NMDA-induced choline release to a small extent (-23%). GABA (100 microM) partiall…

MaleN-MethylaspartateBrain EdemaCyclopentanesIn Vitro TechniquesPharmacologyBicucullineInhibitory postsynaptic potentialHippocampusArticlegamma-Aminobutyric acidCholineGABA AntagonistsRats Sprague-Dawleychemistry.chemical_compoundBilobalideExcitatory Amino Acid AgonistsmedicineAnimalsPicrotoxinDrug InteractionsFuransMolecular Biologygamma-Aminobutyric AcidChemistryGABAA receptorGeneral NeuroscienceBicucullineGABA receptor antagonistBridged Bicyclo Compounds HeterocyclicRatsGinkgolidesNeuroprotective Agentsnervous systemNonlinear DynamicsMechanism of actionArea Under CurveGABAergicNeurology (clinical)medicine.symptomSynaptosomesDevelopmental Biologymedicine.drugBrain Research
researchProduct

Stimulation of hippocampal acetylcholine release by hyperforin, a constituent of St. John’s Wort

2004

Abstract Extracts of the medicinal plant St. John’s Wort ( Hypericum perforatum ) are widely used in the therapy of affective disorders and have been reported to exert antidepressant, anxiolytic, and cognitive effects in experimental and clinical studies. We here report that hyperforin, the major active constituent of the extract, increases the release of acetylcholine from rat hippocampus in vivo as determined by microdialysis. Hippocampal acetylcholine levels were increased by 50–100% following the systemic administration of pure hyperforin at doses of 1 and 10 mg/kg. The effect was almost completely suppressed by local perfusion with calcium-free buffer or with tetrodotoxin (1 μM). We co…

Microdialysismedicine.drug_classMicrodialysisTetrodotoxinPhloroglucinolPharmacologyHippocampusAnxiolyticRats Sprague-DawleyBridged Bicyclo Compoundschemistry.chemical_compoundmedicineAnimalsAnesthetics LocalNeurotransmitterPlant ExtractsTerpenesGeneral NeuroscienceHypericum perforatumAcetylcholineAnti-Bacterial AgentsRatsHyperforinchemistryAntidepressantCholinergicHypericumAcetylcholinemedicine.drugNeuroscience Letters
researchProduct