0000000000289758

AUTHOR

Matti Herranen

showing 9 related works from this author

Spacetime curvature and Higgs stability after inflation

2015

We investigate the dynamics of the Higgs field at the end of inflation in the minimal scenario consisting of an inflaton field coupled to the Standard Model only through the non-minimal gravitational coupling $\xi$ of the Higgs field. Such a coupling is required by renormalisation of the Standard Model in curved space, and in the current scenario also by vacuum stability during high-scale inflation. We find that for $\xi\gtrsim 1$, rapidly changing spacetime curvature at the end of inflation leads to significant production of Higgs particles, potentially triggering a transition to a negative-energy Planck scale vacuum state and causing an immediate collapse of the Universe.

General PhysicsParticle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)spacetime curvaturePhysics MultidisciplinaryVacuum stateFOS: Physical sciencesGeneral Physics and Astronomy01 natural sciences09 Engineeringrenormalizationvacuum stateStandard ModelGravitationGeneral Relativity and Quantum CosmologyHigh Energy Physics - Phenomenology (hep-ph)vacuum stability0103 physical sciencesPARTICLE-PRODUCTIONELECTROWEAK VACUUMHiggs fieldHiggs particles010306 general physics01 Mathematical SciencesPlanck scalePhysicsInflation (cosmology)Science & Technology02 Physical SciencesQuantum field theory in curved spacetimeta114010308 nuclear & particles physicsPhysicsHigh Energy Physics::Phenomenologyhep-phInflatonFIELDSThe Standard ModelCREATIONHiggs fieldHigh Energy Physics - PhenomenologyPhysical Sciencesastro-ph.COHiggs bosonAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Quantum corrections to inflation: the importance of RG-running and choosing the optimal RG-scale

2017

We demonstrate the importance of correctly implementing RG running and choosing the RG scale when calculating quantum corrections to inflaton dynamics. We show that such corrections are negligible for single-field inflation, in the sense of not altering the viable region in the ${n}_{s}\ensuremath{-}r$ plane, when imposing Planck constraints on ${A}_{s}$. Surprisingly, this also applies, in a nontrivial way, for an inflaton coupled to additional spectator degrees of freedom. The result relies on choosing the renormalization scale (pseudo-)optimally, thereby avoiding unphysical large logarithmic corrections to the Friedmann equations and large running of the couplings. We find that the viabl…

Physics beyond the Standard ModelScalar (mathematics)FOS: Physical sciencesAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesClassical limitRenormalizationsymbols.namesakeGeneral Relativity and Quantum Cosmologyquantum correctionsHigh Energy Physics - Phenomenology (hep-ph)Quantum mechanics0103 physical sciences010306 general physicsQuantumMathematical physicsPhysicsta114010308 nuclear & particles physicsFriedmann equationsInflatonRenormalization groupinflatonHigh Energy Physics - Phenomenologysymbols
researchProduct

Kinetic transport theory with quantum coherence

2008

We derive transport equations for fermions and bosons in spatially or temporally varying backgrounds with special symmetries, by use of the Schwinger-Keldysh formalism. In a noninteracting theory the coherence information is shown to be encoded in new singular shells for the 2-point function. Imposing this phase space structure to the interacting theory leads to a a self-consistent equation of motion for a physcial density matrix, including coherence and a well defined collision integral. The method is applied e.g. to demonstrate how an initially coherent out-of-equlibrium state approaches equlibrium through decoherence and thermalization.

Density matrixPhysicsNuclear and High Energy PhysicsQuantum decoherenceThermal quantum field theory010308 nuclear & particles physicsEquations of motionFOS: Physical sciencesFermion01 natural sciencesHigh Energy Physics - PhenomenologyClassical mechanicsHigh Energy Physics - Phenomenology (hep-ph)Quantum mechanicsPhase space0103 physical sciences010306 general physicsQuantumCoherence (physics)
researchProduct

Towards a kinetic theory for fermions with quantum coherence

2008

A new density matrix and corresponding quantum kinetic equations are introduced for fermions undergoing coherent evolution either in time (coherent particle production) or in space (quantum reflection). A central element in our derivation is finding new spectral solutions for the 2-point Green's functions written in the Wigner representation, that are carrying the information of the quantum coherence. Physically observable density matrix is then defined from the bare singular 2-point function by convoluting it with the extrenous information about the state of the system. The formalism is shown to reproduce familiar results from the Dirac equation approach, like Klein problem and nonlocal re…

Density matrixPhysicsHigh Energy Physics - TheoryNuclear and High Energy Physics010308 nuclear & particles physicsAstrophysics (astro-ph)FOS: Physical sciencesObservableFermionAstrophysics01 natural sciencessymbols.namesakeOpen quantum systemHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Classical mechanicsHigh Energy Physics - Theory (hep-th)Dirac equationQuantum processQuantum mechanics0103 physical sciencessymbolsQuantum operation010306 general physicsCoherence (physics)
researchProduct

High-energy evolution to three loops

2018

The Balitsky-Kovchegov equation describes the high-energy growth of gauge theory scattering amplitudes as well as nonlinear saturation effects which stop it. We obtain the three-loop corrections to this equation in planar $\mathcal{N}=4$ super Yang-Mills theory. Our method exploits a recently established equivalence with the physics of soft wide-angle radiation, so-called non-global logarithms, and thus yields at the same time the three-loop evolution equation for non-global logarithms. As a by-product of our analysis, we develop a Lorentz-covariant method to subtract infrared and collinear divergences in cross-section calculations in the planar limit. We compare our result in the linear re…

High Energy Physics - TheoryNuclear and High Energy PhysicsDifferential equationFOS: Physical sciencesYang–Mills theory01 natural sciences114 Physical sciencesperturbative QCDSupersymmetric Gauge TheoryPomeronHARMONIC POLYLOGARITHMSHigh Energy Physics - Phenomenology (hep-ph)supersymmetriaPerturbative QCD0103 physical scienceslcsh:Nuclear and particle physics. Atomic energy. RadioactivityGauge theoryLimit (mathematics)Scattering Amplitudes010306 general physicsQCD AMPLITUDESsupersymmetric gauge theoryMathematical physicsPhysicsPOMERONta114010308 nuclear & particles physicsMASS SINGULARITIESPerturbative QCDDIFFERENTIAL-EQUATIONSscattering amplitudesScattering amplitudeHigh Energy Physics - PhenomenologyHigh Energy Physics - Theory (hep-th)Supersymmetric gauge theoryresummationYANG-MILLS THEORYlcsh:QC770-798ResummationkvanttikenttäteoriaTO-LEADING ORDERGAUGE-THEORYAPPROXIMATIONJournal of High Energy Physics
researchProduct

Coherent quasiparticle approximation (cQPA) and nonlocal coherence

2010

We show that the dynamical Wigner functions for noninteracting fermions and bosons can have complex singularity structures with a number of new solutions accompanying the usual mass-shell dispersion relations. These new shell solutions are shown to encode the information of the quantum coherence between particles and antiparticles, left and right moving chiral states and/or between different flavour states. Analogously to the usual derivation of the Boltzmann equation, we impose this extended phase space structure on the full interacting theory. This extension of the quasiparticle approximation gives rise to a self-consistent equation of motion for a density matrix that combines the quantum…

Density matrixPhysicsHistoryParticle physicsQuantum decoherence010308 nuclear & particles physicsFOS: Physical scienceshep-phFermion114 Physical sciences01 natural sciencesBoltzmann equationComputer Science ApplicationsEducationBaryogenesisHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)SingularityQuantum mechanics0103 physical sciencesQuasiparticle010306 general physicsCoherence (physics)Journal of Physics: Conference Series
researchProduct

Quantum kinetic theory for fermions in temporally varying backrounds

2008

We derive quantum kinetic equations for fermions in a homogeneous time-dependent background in presence of decohering collisions, by use of the Schwinger-Keldysh CTP-formalism. The quantum coherence (between particles and antiparticles) is found to arise from new spectral solutions for the dynamical 2-point correlation function in the mean field limit. The physical density matrix $\rho$ and its dynamics is shown to be necessarily dependent on the extrenous information on the system, and expressions that relate $\rho$ to fundamental coherence functions and fermionic particle and antiparticle numbers are derived. For an interacting system we demonstrate how smooth decoherence effects are indu…

Density matrixPhysicsHigh Energy Physics - TheoryNuclear and High Energy PhysicsQuantum decoherenceThermal quantum field theoryAstrophysics (astro-ph)FOS: Physical sciencesFermionAstrophysicsHigh Energy Physics - PhenomenologyThermalisationHigh Energy Physics - Phenomenology (hep-ph)High Energy Physics - Theory (hep-th)Quantum mechanicsQuasiparticleQuantumCoherence (physics)
researchProduct

Quantum kinetic theory with nonlocal coherence

2009

researchProduct

Kvanttikuljetusyhtälöt sähköheikossa baryogeneesissa

2005

kvanttimekaniikkahiukkasfysiikkakosmologia
researchProduct