6533b7d9fe1ef96bd126cc2c
RESEARCH PRODUCT
Kinetic transport theory with quantum coherence
Kimmo KainulainenPyry Matti RahkilaMatti Herranensubject
Density matrixPhysicsNuclear and High Energy PhysicsQuantum decoherenceThermal quantum field theory010308 nuclear & particles physicsEquations of motionFOS: Physical sciencesFermion01 natural sciencesHigh Energy Physics - PhenomenologyClassical mechanicsHigh Energy Physics - Phenomenology (hep-ph)Quantum mechanicsPhase space0103 physical sciences010306 general physicsQuantumCoherence (physics)description
We derive transport equations for fermions and bosons in spatially or temporally varying backgrounds with special symmetries, by use of the Schwinger-Keldysh formalism. In a noninteracting theory the coherence information is shown to be encoded in new singular shells for the 2-point function. Imposing this phase space structure to the interacting theory leads to a a self-consistent equation of motion for a physcial density matrix, including coherence and a well defined collision integral. The method is applied e.g. to demonstrate how an initially coherent out-of-equlibrium state approaches equlibrium through decoherence and thermalization.
year | journal | country | edition | language |
---|---|---|---|---|
2008-11-06 |