0000000000289794
AUTHOR
Tomi Waselius
CA3–CA1 long‐term potentiation occurs regardless of respiration and cardiac cycle phases in urethane‐anesthetized rats
Breathing and heartbeat synchronize to each other and to brain function and affect cognition in humans. However, it is not clear how cardiorespiratory rhythms modulate such basic processes as synaptic plasticity thought to underlie learning. Thus, we studied if respiration and cardiac cycle phases at burst stimulation onset affect hippocampal long-term potentiation (LTP) in the CA3–CA1 synapse in urethane-anesthetized adult male Sprague–Dawley rats. In a between-subjects design, we timed burst stimulation of the ventral hippocampal commissure (vHC) to systole or diastole either during expiration or inspiration and recorded responses throughout the hippocampus with a linear probe. As classic…
Cardiac cycle and respiration phase affect responses to the conditioned stimulus in young adults trained in trace eyeblink conditioning
Rhythms of breathing and heartbeat are linked to each other as well as to rhythms of the brain. Our recent studies suggest that presenting the conditioned stimulus during expiration or during the diastolic phase of the cardiac cycle facilitates neural processing of that stimulus and improves learning an eyeblink classical conditioning task. To date, it has not been examined whether utilizing information from both respiration and cardiac cycle phases simultaneously allows even more efficient modulation of learning. Here we studied whether the timing of the conditioned stimulus to different cardiorespiratory rhythm phase combinations affects learning trace eyeblink conditioning in healthy you…
Most hippocampal CA1 pyramidal cells in rabbits increase firing during awake sharp-wave ripples and some do so in response to external stimulation and theta.
Hippocampus forms neural representations of real-life events including multimodal information of spatial and temporal context. These representations, i.e. organized sequences of neuronal firing are repeated during following rest and sleep, especially when so-called sharp-wave ripples (SPW-Rs) characterize hippocampal local-field potentials. This SPW-R –related replay is thought to underlie memory consolidation. Here, we set out to explore how hippocampal CA1 pyramidal cells respond to the conditioned stimulus during trace eyeblink conditioning and how these responses manifest during SPW-Rs in awake adult female New Zealand White rabbits. Based on reports in rodents, we expected SPW-Rs to ta…
Learning by heart : cardiac cycle reveals an effective time window for learning
Cardiac cycle phase is known to modulate processing of simple sensory information. This effect of the heartbeat on brain function is likely exerted via baroreceptors, the neurons sensitive for changes in blood pressure. From baroreceptors, the signal is conveyed all the way to the forebrain and the medial prefrontal cortex. In the two experiments reported, we examined whether learning, as a more complex form of cognition, can be modulated by the cardiac cycle phase. Human participants ( experiment 1) and rabbits ( experiment 2) were trained in trace eyeblink conditioning while neural activity was recorded. The conditioned stimulus was presented contingently with either the systolic or dias…
Hippocampal responses to electrical stimulation of the major input pathways are modulated by dentate spikes
Dentate gyrus (DG) is important for pattern separation and spatial memory, and it is thought to gate information flow to the downstream hippocampal subregions. Dentate spikes (DSs) are high-amplitude, fast, positive local-field potential events taking place in the DG during immobility and sleep, and they have been connected to memory consolidation in rodents. DSs are a result of signaling from the entorhinal cortex (EC) to the DG, and they suppress firing of pyramidal cells in the CA3 and CA1. To study the effects of DSs to signaling in the hippocampal tri-synaptic loop, we electrically stimulated the afferent fibers of the DG, CA3, and CA1 in adult male Sprague–Dawley rats at different del…
Hippocampal theta phase-contingent memory retrieval in delay and trace eyeblink conditioning
Hippocampal theta oscillations (3-12Hz) play a prominent role in learning. It has been suggested that encoding and retrieval of memories are supported by different phases of the theta cycle. Our previous study on trace eyeblink conditioning in rabbits suggests that the timing of the conditioned stimulus (CS) in relation to theta phase affects encoding but not retrieval of the memory trace. Here, we directly tested the effects of hippocampal theta phase on memory retrieval in two experiments conducted on adult female New Zealand White rabbits. In Experiment 1, animals were trained in trace eyeblink conditioning followed by extinction, and memory retrieval was tested by presenting the CS at t…
Automatic auditory and somatosensory brain responses in relation to cognitive abilities and physical fitness in older adults
AbstractIn normal ageing, structural and functional changes in the brain lead to an altered processing of sensory stimuli and to changes in cognitive functions. The link between changes in sensory processing and cognition is not well understood, but physical fitness is suggested to be beneficial for both. We recorded event-related potentials to somatosensory and auditory stimuli in a passive change detection paradigm from 81 older and 38 young women and investigated their associations with cognitive performance. In older adults also associations to physical fitness were studied. The somatosensory mismatch response was attenuated in older adults and it associated with executive functions. So…
Dentate spikes and learning : disrupting hippocampal function during memory consolidation can improve pattern separation
Hippocampal dentate spikes (DSs) are short-duration, large-amplitude fluctuations in hilar local field potentials and take place while resting and sleeping. During DSs, dentate gyrus granule cells increase firing while CA1 pyramidal cells decrease firing. Recent findings suggest DSs play a significant role in memory consolidation after training on a hippocampus-dependent, nonspatial associative learning task. Here, we aimed to find out whether DSs are important in other types of hippocampus-dependent learning tasks as well. To this end, we trained adult male Sprague-Dawley rats in a spatial reference memory task, a fixed interval task, and a pattern separation task. During a rest period im…
Irradiation of the head reduces adult hippocampal neurogenesis and impairs spatial memory, but leaves overall health intact in rats.
Treatment of brain cancer, glioma, can cause cognitive impairment as a side‐effect, possibly because it disrupts the integrity of the hippocampus, a structure vital for normal memory. Radiotherapy is commonly used to treat glioma, but the effects of irradiation on the brain are still poorly understood, and other biological effects have not been extensively studied. Here we exposed healthy adult male rats to small and moderate‐dose irradiation of the head. We found no effect of irradiation on systemic inflammation, weight gain or gut microbiota diversity, although it increased the abundance of Bacteroidaceae family, namely Bacteroides genus in the gut microbiota. Irradiation had no effect on…
Breathe out and learn: Expiration-contingent stimulus presentation facilitates associative learning in trace eyeblink conditioning.
Rhythmic variation in heart rate and respiratory pattern are coupled in a way that optimizes the level of oxygen in the blood stream of the lungs and the body as well as saves energy in pulmonary gas exchange. It has been suggested that the cardiac cycle and respiratory pattern are coupled to neural oscillations of the brain. Yet, studies on how this rhythmic coupling is related to behavior are scarce. There is some evidence that, for example, the phase of respiration affects memory retrieval and the electrophysiological oscillatory state of the limbic system. It is also known that the phase of the cardiac cycle and hippocampal electrophysiological oscillations alone affect learning. Here, …
Hippocampal theta phase-contingent memory retrieval in delay and trace eyeblink conditioning
Hippocampal theta oscillations (3–12 Hz) play a prominent role in learning. It has been suggested that encoding and retrieval of memories are supported by different phases of the theta cycle. Our previous study on trace eyeblink conditioning in rabbits suggests that the timing of the conditioned stimulus (CS) in relation to theta phase affects encoding but not retrieval of the memory trace. Here, we directly tested the effects of hippocampal theta phase on memory retrieval in two experiments conducted on adult female New Zealand White rabbits. In Experiment 1, animals were trained in trace eyeblink conditioning followed by extinction, and memory retrieval was tested by presenting the CS at …
Breathe out and learn : Expiration-contingent stimulus presentation facilitates associative learning in trace eyeblink conditioning
Rhythmic variation in heart rate and respiratory pattern are coupled in a way that optimizes the level of oxygen in the blood stream of the lungs and the body as well as saves energy in pulmonary gas exchange. It has been suggested that the cardiac cycle and respiratory pattern are coupled to neural oscillations of the brain. Yet, studies on how this rhythmic coupling is related to behavior are scarce. There is some evidence that, for example, the phase of respiration affects memory retrieval and the electrophysiological oscillatory state of the limbic system. It is also known that the phase of the cardiac cycle and hippocampal electrophysiological oscillations alone affect learning. Here, …
Hippocampal electrical stimulation disrupts associative learning when targeted at dentate spikes
Hippocampal electrophysiological oscillations, namely theta and ripples, have been implicated in encoding and consolidation of new memories, respectively. According to existing literature, hippocampal dentate spikes are prominent, short‐duration (<30 ms), large‐amplitude (∼2–4 mV) fluctuations in hilar local‐field potentials that take place during awake immobility and sleep. Interestingly, previous studies indicate that during dentate spikes dentate gyrus granule cells increase their firing while firing of CA1 pyramidal cells are suppressed, thus resulting in momentary uncoupling of the two hippocampal subregions. To date, the behavioural significance of dentate spikes is unknown. Here, to …
Phase matters: responding to and learning about peripheral stimuli depends on hippocampal θ phase at stimulus onset.
Hippocampal θ (3–12 Hz) oscillations are implicated in learning and memory, but their functional role remains unclear. We studied the effect of the phase of local θ oscillation on hippocampal responses to a neutral conditioned stimulus (CS) and subsequent learning of classical trace eyeblink conditioning in adult rabbits. High-amplitude, regular hippocampal θ-band responses (that predict good learning) were elicited by the CS when it was timed to commence at the fissure θ trough (Trough group). Regardless, learning in this group was not enhanced compared with a yoked control group, possibly due to a ceiling effect. However, when the CS was consistently presented to the peak of θ (Peak group…
Hippocampal electrical stimulation disrupts associative learning when targeted at dentate spikes
KEY POINTS Dentate spikes are fast fluctuations of hilar local-field potentials that take place during rest and are thought to reflect input arriving from the entorhinal cortex to the hippocampus. During dentate spikes, neuronal firing in hippocampal input (dentate gyrus) and output (CA1/CA3) regions is uncoupled. To date, the behavioural significance of dentate spikes is unknown. Here, we provide evidence that disrupting the dentate spike-related uncoupling of the dentate gyrus and the CA1/CA3 subregions for 1 h after training retards associative learning. We suggest dentate spikes play a significant role in memory consolidation. ABSTRACT Hippocampal electrophysiological oscillations, name…