0000000000291181
AUTHOR
D. Gorelov
Experimental study of $^{100}$Tc $\beta$ decay with total absorption $\gamma$-ray spectroscopy
International audience; The β decay of Tc100 has been studied by using the total absorption γ-ray spectroscopy technique at the Ion Guide Isotope Separator On-Line facility in Jyväskylä. In this work the new Decay Total Absorption γ-ray Spectrometer in coincidence with a cylindrical plastic β detector has been employed. The β intensity to the ground state obtained from the analysis is in good agreement with previous high-resolution measurements. However, differences in the feeding to the first-excited state as well as weak feeding to a new level at high excitation energy have been deduced from this experiment. Theoretical calculations performed in the quasiparticle random-phase approximatio…
Total absorption γ-ray spectroscopy of the β decays of 96gs,mY
The β decays of the ground state (gs) and isomeric state (m) of 96Y have been studied with the total absorption γ-ray spectroscopy technique at the Ion Guide Isotope Separator On-Line facility. The separation of the 8+ isomeric state from the 0− ground state was achieved thanks to the purification capabilities of the JYFLTRAP double Penning trap system. The β-intensity distributions of both decays have been independently determined. In the analyses the deexcitation of the 1581.6 keV level in 96Zr, in which conversion electron emission competes with pair production, has been carefully considered and found to have significant impact on the β-detector efficiency, influencing the β-intensity di…
Determination of β-decay ground state feeding of nuclei of importance for reactor applications
In β-decay studies the determination of the decay probability to the ground state (g.s.) of the daughter nucleus often suffers from large systematic errors. The difficulty of the measurement is related to the absence of associated delayed γ-ray emission. In this work we revisit the 4πγ−β method proposed by Greenwood and collaborators in the 1990s, which has the potential to overcome some of the experimental difficulties. Our interest is driven by the need to determine accurately the β-intensity distributions of fission products that contribute significantly to the reactor decay heat and to the antineutrinos emitted by reactors. A number of such decays have large g.s. branches. The method is…
Study of the $��$-decay of $^{100}$Tc with Total Absorption $��$-Ray Spectroscopy
The \b{eta}-decay of 100 Tc has been studied using the Total Absorption ��-Ray Spectroscopy technique at IGISOL. In this work the new DTAS spectrometer in coincidence with a cylindrical plastic \b{eta} detector has been employed. The \b{eta}-intensity to the ground state obtained from the analysis is in good agreement with previous high-resolution measurements. However, differences in the feeding to the first excited state as well as weak feeding to a new level at high excitation energy have been deduced from this experiment. Theoretical calculations performed in the quasiparticle random- phase approximation (QRPA) framework are also reported. Comparison of these calculations with our measu…
Results of DTAS Campaign at IGISOL : Overview
The β decays of more than twenty fission fragments were measured in the first experiments with radioactive-ion beams employing the Decay Total Absorption γ-ray Spectrometer. In this work, we summarize the main results obtained so far from this experimental campaign carried out at the Ion Guide Isotope Separator On-Line facility. The advances introduced for these studies represent the state-of-the-art of our analysis methodology for segmented spectrometers. peerReviewed
Study of the $\beta$-decay of $^{100}$Tc with Total Absorption $\gamma$-Ray Spectroscopy
The \b{eta}-decay of 100 Tc has been studied using the Total Absorption {\gamma}-Ray Spectroscopy technique at IGISOL. In this work the new DTAS spectrometer in coincidence with a cylindrical plastic \b{eta} detector has been employed. The \b{eta}-intensity to the ground state obtained from the analysis is in good agreement with previous high-resolution measurements. However, differences in the feeding to the first excited state as well as weak feeding to a new level at high excitation energy have been deduced from this experiment. Theoretical calculations performed in the quasiparticle random- phase approximation (QRPA) framework are also reported. Comparison of these calculations with our…
Total absorption γ-ray spectroscopy of the β-delayed neutron emitters 137I and 95Rb
The decays of the β-delayed neutron emitters 137I and 95Rb have been studied with the total absorption γ-ray spectroscopy technique. The purity of the beams provided by the JYFLTRAP Penning trap at the ion guide isotope separator on-line facility in Jyväskylä allowed us to carry out a campaign of isotopically pure measurements with the decay total absorption γ-ray spectrometer, a segmented detector composed of 18 NaI(Tl) modules. The contamination coming from the interaction of neutrons with the spectrometer has been carefully studied, and we have tested the use of time differences between prompt γ rays and delayed neutron interactions to eliminate this source of contamination. Due to the s…
Design of a High Intensity Neutron Source for Neutron-Induced Fission Yield Studies
The upgraded IGISOL facility with JYFLTRAP, at the accelerator laboratory of the University of Jyv\"askyl\"a, has been supplied with a new cyclotron which will provide protons of the order of 100 {\mu}A with up to 30 MeV energy, or deuterons with half the energy and intensity. This makes it an ideal place for measurements of neutron-induced fission products from various actinides, in view of proposed future nuclear fuel cycles. The groups at Uppsala University and University of Jyv\"askyl\"a are working on the design of a neutron converter that will be used as neutron source in fission yield studies. The design is based on simulations with Monte Carlo codes and a benchmark measurement that …
Target thickness dependence of the Be(p,xn) neutron energy spectrum
We report on the current status of the analysis of an experiment performed at The Svedberg Laboratory, with the aim of investigating the produced neutron field by Be(p,xn) converters of three different thicknesses with a 30 MeV proton beam. The neutron energy spectra were measured with the Time of Flight technique using a BC-501 liquid scintillator with good n-γ Pulse Shape Discrimination properties, while the detected events were recorded simultaneously by two Data AcQuisition systems. In this paper, we present the experimental setup, the analysis technique and some preliminary results. AlFONS
Benchmark of a multi-physics Monte Carlo simulation of an ionguide for neutron-induced fission products
AbstractTo enhance the production of medium-heavy, neutron-rich nuclei, and to facilitate measurements of independent yields of neutron-induced fission, a proton-to-neutron converter and a dedicated ion guide for neutron-induced fission have been developed for the IGISOL facility at the University of Jyväskylä. The ion guide holds the fissionable targets, and the fission products emerging from the targets are collected in helium gas and transported to the downstream experimental stations. A computer model, based on a combination of MCNPX for modeling the neutron production, the fission code GEF, and GEANT4 for the transport of the fission products, was developed. The model will be used to i…