0000000000291472

AUTHOR

Dennis Renisch

showing 4 related works from this author

Actinide and lanthanide thin-layer developments using a drop-on-demand printing system

2023

Actinide and lanthanide thin layers with specific requirements regarding thickness, homogeneity, chemical purity, mechanical stability, and backing properties are applied in a multitude of physics and chemistry experiments. A novel target preparation method, the so-called “Drop-on-Demand” (DoD) technique, based on a commercial nanoliter (nL) dispenser is applied since a few years in the Nuclear Chemistry unit at Johannes Gutenberg University Mainz. The wetting behaviour of the nL droplets on the substrate’s surface is a key parameter determining the spatial distribution of the deposited material after evaporation. By switching from aqueous to organic solvents as well as by substrate surface…

aktinoidit lantanoiditactinideslanthanidesdrop-on-demand printing systemharvinaiset maametallit
researchProduct

Targets on superhydrophobic surfaces for laser ablation ion sources

2012

Target preparation techniques for a laser ablation ion source at the Penning-trap mass spectrometer TRIGA-TRAP have been investigated with regard to future experiments with actinides. To be able to perform mass measurements on these nuclides considering their limited availability, an efficient target preparation technique is mandatory. Here, we report on a new approach for target production using backings, which are pretreated in a way that a superhydrophobic surface is formed. This resulted in improved targets with a more homogeneous distribution of the target material compared to standard techniques with unmodified backings. It was demonstrated that the use of these new targets in a laser…

PhysicsNuclear and High Energy PhysicsLaser ablationbusiness.industryActinideMass spectrometryHomogeneous distributionIon sourceIonOptoelectronicsNuclideAtomic physicsbusinessInstrumentationNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct

Qvalue and half-life of double-electron capture in184Os

2012

The observation of neutrinoless double-beta transitionswould reveal physics beyond the Standard Model, asit would establish neutrinos to be Majorana particles,which implies a violation of the lepton number conserva-tion. Experiments searching for these transitions have fo-cused on the detection of neutrinoless double-beta decay(0 ) rather than neutrinoless double-electron capture(0). One reason among others is in general the sig-ni cantly shorter half-life of the 0 process. However,in the case of neutrinoless double-electron capture, thetransition is expected to be resonantly enhanced if theinitial and the nal state of the transition are degeneratein energy [1{3].In this work, we inves…

PhysicsNuclear physicsNuclear and High Energy PhysicsMAJORANAParticle physicsQ valueElectron captureDouble beta decayPhysics beyond the Standard ModelNeutrinoBeta decayLepton numberPhysical Review C
researchProduct

Direct mass measurements of cadmium and palladium isotopes and their double-βtransitionQvalues

2012

The Q-value of the double-electron capture in Cd-108 has been determined to be (272.04 +/- 0.55) keV in a direct measurement with the double-Penning trap mass spectrometer TRIGA-TRAP. Based on this result a resonant enhancement of the decay rate of Cd-108 is excluded. We have confirmed the double-beta transition Q-values of Cd-106 and Pd-110 recently measured with the Penning-trap mass spectrometers SHIPTRAP and ISOLTRAP, respectively. Furthermore, the atomic masses of the involved nuclides Cd-106, Cd-108, Cd-110, Pd-106, Pd-108 and Pd-110 have been directly linked to the atomic mass standard.

PhysicsNuclear and High Energy PhysicsCadmiumchemistryIsotopes of palladiumDouble beta decaychemistry.chemical_elementNuclideAtomic physicsMass spectrometryISOLTRAPBeta decayAtomic massPhysical Review C
researchProduct