0000000000291547

AUTHOR

Fernando Montes

showing 17 related works from this author

First Measurement of Severalβ-Delayed Neutron Emitting Isotopes BeyondN=126

2016

The β-delayed neutron emission probabilities of neutron rich Hg and Tl nuclei have been measured together with β-decay half-lives for 20 isotopes of Au, Hg, Tl, Pb, and Bi in the mass region N≳126. These are the heaviest species where neutron emission has been observed so far. These measurements provide key information to evaluate the performance of nuclear microscopic and phenomenological models in reproducing the high-energy part of the β-decay strength distribution. This provides important constraints on global theoretical models currently used in r-process nucleosynthesis.

PhysicsIsotope010308 nuclear & particles physicsNeutron emissionAstrophysics::High Energy Astrophysical PhenomenaNuclear TheoryGeneral Physics and Astronomy01 natural sciencesMass formulaNuclear physics13. Climate actionNucleosynthesis0103 physical sciencesr-processNeutronNuclear Experiment010306 general physicss-processDelayed neutronPhysical Review Letters
researchProduct

Low-lying level structure of Cu56 and its implications for the rp process

2017

The low-lying energy levels of proton-rich Cu56 have been extracted using in-beam γ-ray spectroscopy with the state-of-the-art γ-ray tracking array GRETINA in conjunction with the S800 spectrograph at the National Superconducting Cyclotron Laboratory at Michigan State University. Excited states in Cu56 serve as resonances in the Ni55(p,γ)Cu56 reaction, which is a part of the rp process in type-I x-ray bursts. To resolve existing ambiguities in the reaction Q value, a more localized isobaric multiplet mass equation (IMME) fit is used, resulting in Q=639±82 keV. We derive the first experimentally constrained thermonuclear reaction rate for Ni55(p,γ)Cu56. We find that, with this new rate, the …

Physics010308 nuclear & particles physicsQ valuerp-process01 natural sciencesNuclear physicsMass formulaExcited state0103 physical sciencesLevel structureIsobaric processAtomic physics010306 general physicsSpectroscopyMultipletPhysical Review C
researchProduct

New experimental efforts along the rp-process path

2007

The level structure just above the proton threshold of the nucleus 30S has been studied using the neutron removal process on fast radioactive beams at the National Superconducting Cyclotron Laboratory (NSCL) at Michigan State University. In this work we provide a description of the experimental setup. The present status of the analysis is also discussed.

Nuclear physicsPhysicsNuclear and High Energy PhysicsSuperconducting cyclotronProtonNuclear TheoryPath (graph theory)Physics::Accelerator PhysicsLevel structureNeutronrp-processNuclear ExperimentJournal of Physics G: Nuclear and Particle Physics
researchProduct

β-decay measurements ofA≃ 70 − 110 r-process nuclei at the National Superconducting Cyclotron Laboratory

2011

The present paper reports on several r-process motivated β-decay experiments undertaken at the National Superconducting Cyclotron Laboratory. β-decay half-lives and β-delayed neutron-emission probabilities were measured for nuclei around the r-process A = 70–80 and A = 90 – 110 mass regions. The data are discussed on the basis of quasi-random phase approximation calculations. The emphasis is made on the impact of these data upon calculations of r-process abundances.

PhysicsHistoryNeutron emissionHadronCyclotronComputer Science ApplicationsEducationlaw.inventionNuclear physicslawr-processNeutronAtomic physicsNucleonRandom phase approximationRadioactive decayJournal of Physics: Conference Series
researchProduct

Radioactive ion beams in the region of 100Sn and 78Ni at the NSCL

2004

The regions around the doubly magic nuclei 100 Sn and 78 Ni are of great interest from a nuclear structure standpoint. These nuclei also play a key role in the astrophysical rp- and r-processes, respectively. Recently, nuclei in these regions were studied at the Coupled Cyclotron Facility at the National Superconducting Cyclotron Laboratory (NSCL) at Michigan State University.

Nuclear physicsRadioactive ion beamsPhysicsNuclear and High Energy PhysicsSuperconducting cyclotronlawCyclotronNuclear structureMAGIC (telescope)Atomic physicslaw.inventionNuclear Physics A
researchProduct

β-decay studies of r-process nuclei at NSCL

2008

Abstract Observed neutron-capture elemental abundances in metal-poor stars, along with ongoing analysis of the extremely metal-poor Eu-enriched sub-class provide new guidance for astrophysical models aimed at finding the r-process sites. The present paper emphasizes the importance of nuclear physics parameters entering in these models, particularly β -decay properties of neutron-rich nuclei. In this context, several r-process motivated β -decay experiments performed at the National Superconducting Cyclotron Laboratory (NSCL) are presented, including a summary of results and impact on model calculations.

Nuclear physicsPhysicsNuclear and High Energy PhysicsStarsSuperconducting cyclotronDouble beta decayr-processContext (language use)Nuclear ExperimentBeta decayNuclear Physics A
researchProduct

β-decay half-lives andβ-delayed neutron emission probabilities of nuclei in the regionA≲110, relevant for the r process

2009

Measurements of $\ensuremath{\beta}$-decay properties of $A\ensuremath{\lesssim}110$ r-process nuclei have been completed at the National Superconducting Cyclotron Laboratory at Michigan State University. $\ensuremath{\beta}$-decay half-lives for $^{105}\mathrm{Y}$, $^{106,107}\mathrm{Zr}$, and $^{111}\mathrm{Mo}$, along with $\ensuremath{\beta}$-delayed neutron emission probabilities of $^{104}\mathrm{Y}$, $^{109,110}\mathrm{Mo}$ and upper limits for $^{105}\mathrm{Y}$, $^{103\ensuremath{-}107}\mathrm{Zr}$, and $^{108,111}\mathrm{Mo}$ have been measured for the first time. Studies on the basis of the quasi-random-phase approximation are used to analyze the ground-state deformation of these…

Nuclear physicsPhysicsNuclear and High Energy PhysicsSuperconducting cyclotronNeutron emissionDouble beta decayIsotopes of zirconiumr-processAtomic numberAtomic physicsRandom phase approximationDelayed neutronPhysical Review C
researchProduct

β-Decay Studies Close to the N=82 r-process Path

2005

New half-lives for neutron-rich ruthenium, rhodium and palladium isotopes close to the r-process path along the N=82 closed shell have been measured at the National Superconducting Cyclotron Laboratory at Michigan State University. The studied isotopes are close to the critical A=118-126 mass region in the astrophysical r-process, where incorrect nuclear structure development towards the shell closure may have the most pronounced effect on the abundances of elements produced. Neutron-rich nuclei were produced by fragmentation of a 120-MeV per nucleon 136 Xe beam on Be and were separated by the A1900 fragment separator. The nuclei of interest were implanted into a double-sided Si strip detec…

PhysicsNuclear and High Energy PhysicsIsotopeNuclear TheoryNuclear structurechemistry.chemical_elementKinetic energyRhodiumNuclear physicschemistryIsotopes of palladiumr-processAtomic physicsNuclear ExperimentNucleonOpen shellNuclear Physics A
researchProduct

β-delayed neutron emission of r-process nuclei at the N = 82 shell closure

2021

This experiment was performed at RI Beam Factory operated by RIKEN Nishina Center and CNS, University of Tokyo. O.H, T.D, P.J.W, C.G.B, C.J.G and D.K would like to thank STFC, UK for support. This research was sponsored in part by the Office of Nuclear Physics, U.S. Department of Energy under Award No. DE-FG02-96ER40983 (UTK) and DEAC05-00OR22725 (ORNL), and by the National Nuclear Security Administration under the Stewardship Science Academic Alliances program through DOE Award No. DENA0002132. This work was supported by National Science Foundation under Grants No. PHY-1430152 (JINA Center for the Evolution of the Elements), No. PHY-1565546 (NSCL), and No. PHY-1714153 (Central Michigan Uni…

Nuclear and High Energy PhysicsNational securityQC1-999ß-delayedNuclear physicsLibrary scienceNeutrons--Capturaβ-delayed neutron emission7. Clean energy01 natural sciencesNeutrons--CaptureAstrophysical0103 physical sciencesEuropean commissionr-processimportant010306 general physicsChinaNuclear ExperimentNeutron emissionr-processPhysics:Física [Àrees temàtiques de la UPC]010308 nuclear & particles physicsbusiness.industryr-processPhysicsChinese academy of sciencesbeta-delayed neutron emissionResearch councilChristian ministryFísica nuclearNational laboratorybusinessAdministration (government)Physics Letters B
researchProduct

Improving the nuclear physics input along the rp-process path

2007

The level structure of 30 S was studied at the NSCL by using neutron removal reactions with a radioactive 31 S beam. The γ -decay from excited states in 30 S was measured in a Ge-detector array. The results discussed for this work will reduce the uncertainties in the determination of the astrophysical 29 P(p, γ ) 30 S reaction rate under rp -process conditions.

PhysicsReaction rateNuclear physicsNuclear and High Energy PhysicsWork (thermodynamics)Excited statePath (graph theory)Level structureNeutronrp-processAtomic physicsNuclear ExperimentBeam (structure)Nuclear Physics A
researchProduct

Nucleosynthesis of proton-rich nuclei. Experimental results on the rp-process

2009

Experience NSCL; International audience; We report in this study the nuclear properties of proton-rich isotopes located along the rp-process path. The experiments have recently been performed at the National Superconducting Cyclotron Laboratory (NSCL) at Michigan State University. The level properties above the proton separation energy of the nuclei 30S, 36K and 37Ca were measured with precision of < 10 keV. This will allow a reduction in the determination of the astrophysical (p, ) reaction rate under rp-process conditions.

Nuclear reactionPhysicsHistoryProton010308 nuclear & particles physics[SDU.ASTR.SR]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR]Nuclear TheoryCyclotronrp-process[PHYS.ASTR.SR]Physics [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR]7. Clean energy01 natural sciencesComputer Science ApplicationsEducationlaw.inventionNuclear physicsIsotopes of potassiumlawNucleosynthesis0103 physical sciencesr-processAtomic physics010306 general physicsNuclear ExperimentRadioactive decay
researchProduct

The neutron long counter NERO for studies of neutron emission in the r-process

2010

Abstract The neutron long counter NERO was built at the National Superconducting Cyclotron Laboratory (NSCL), Michigan State University, for measuring β -delayed neutron-emission probabilities. The detector was designed to work in conjunction with a β -delay implantation station, so that β decays and β -delayed neutrons emitted from implanted nuclei can be measured simultaneously. The high efficiency of about 40%, for the range of energies of interest, along with the small background, are crucial for measuring β -delayed neutron emission branchings for neutron-rich r-process nuclei produced as low intensity fragmentation beams in in-flight separator facilities.

PhysicsNuclear and High Energy PhysicsNeutron emissionAstrophysics::High Energy Astrophysical PhenomenaNuclear TheoryNeutron stimulated emission computed tomographyNuclear physicsPrompt neutronNeutron cross sectionr-processNeutronNuclear ExperimentInstrumentationDelayed neutronNeutron activationNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct

β-decay and β-delayed Neutron Emission Measurements at GSI-FRS Beyond N=126, for r-process Nucleosynthesis

2014

New measurements of very exotic nuclei in the neutron-rich region beyond N=126 have been performed at the GSI facility with the fragment separator (FRS). The aim of the experiment is to determine half-lives and β-delayed neutron emission branching ratios of isotopes of Hg, Tl and Pb in this region. This contribution summarizes final counting statistics for identification and for implantation, as well as the present status of the data analysis of the half-lives. In summary, isotopes of Pt, Au, Hg, Tl, Pb, Bi, Po, At, Rn and Fr were clearly identified and several of them (208-211Hg, 211-215Tl, 214-218Pb) were implanted with enough statistics to determine their half-lives. About half of them a…

PhysicsNuclear and High Energy PhysicsIsotope010308 nuclear & particles physicsNeutron emissionBranching fraction01 natural sciencesNuclear physicsNucleosynthesis0103 physical sciencesr-processNeutron010306 general physicss-processDelayed neutronNuclear Data Sheets
researchProduct

Single-particle shell strengths near the doubly magic nucleus 56Ni and the 56Ni(p,γ)57Cu reaction rate in explosive astrophysical burning

2019

Angle-integrated cross-section measurements of the $^{56}$Ni(d,n) and (d,p) stripping reactions have been performed to determine the single-particle strengths of low-lying excited states in the mirror nuclei pair $^{57}$Cu-$^{57}$Ni situated adjacent to the doubly magic nucleus $^{56}$Ni. The reactions were studied in inverse kinematics utilizing a beam of radioactive $^{56}$Ni ions in conjunction with the GRETINA $\gamma$-array. Spectroscopic factors are compared with new shell-model calculations using a full $pf$ model space with the GPFX1A Hamiltonian for the isospin-conserving strong interaction plus Coulomb and charge-dependent Hamiltonians. These results were used to set new constrain…

Nuclear and High Energy Physicsastro-ph.SRNuclear TheoryExplosive materialnucl-thStrong interactionnucl-ex01 natural sciencesIonReaction ratesymbols.namesake0103 physical sciencesCoulombMirror nuclei010306 general physicsNuclear ExperimentNuclear ExperimentPhysicsradioactive beams010308 nuclear & particles physicsshell modellcsh:QC1-999Astrophysics - Solar and Stellar AstrophysicsExcited statesymbolsX-ray burststransfer reactionsAtomic physicsHamiltonian (quantum mechanics)ydinfysiikkalcsh:PhysicsPhysics Letters B
researchProduct

Determining therp-Process Flow throughNi56: Resonances inCu57(p,γ)Zn58Identified with GRETINA

2014

An approach is presented to experimentally constrain previously unreachable (p, γ) reaction rates on nuclei far from stability in the astrophysical rp process. Energies of all critical resonances in the (57)Cu(p,γ)(58)Zn reaction are deduced by populating states in (58)Zn with a (d, n) reaction in inverse kinematics at 75 MeV/u, and detecting γ-ray-recoil coincidences with the state-of-the-art γ-ray tracking array GRETINA and the S800 spectrograph at the National Superconducting Cyclotron Laboratory. The results reduce the uncertainty in the (57)Cu(p,γ) reaction rate by several orders of magnitude. The effective lifetime of (56)Ni, an important waiting point in the rp process in x-ray burst…

PhysicsReaction rateChemical substanceSuperconducting cyclotronOrders of magnitude (time)Radiative captureFlow (psychology)Analytical chemistryGeneral Physics and Astronomyrp-processNuclear ExperimentPhysical Review Letters
researchProduct

Application of the relativistic mean-field mass model to ther-process and the influence of mass uncertainties

2008

A new mass table calculated by the relativistic mean-field approach with the state-dependent BCS method for the pairing correlation is applied for the first time to study r-process nucleosynthesis. The solar r-process abundance is well reproduced within a waiting-point approximation approach. Using an exponential fitting procedure to find the required astrophysical conditions, the influence of mass uncertainty is investigated. The r-process calculations using the FRDM, ETFSI-Q, and HFB-13 mass tables have been used for that purpose. It is found that the nuclear physical uncertainty can significantly influence the deduced astrophysical conditions for the r-process site. In addition, the infl…

PhysicsNuclear physicsNuclear and High Energy PhysicsMean field theoryNucleosynthesisPairingNuclear structurer-processBCS theoryTable (information)Exponential functionPhysical Review C
researchProduct

Half-Life of the Doubly Magicr-Process NucleusN78i

2005

Nuclei with magic numbers serve as important benchmarks in nuclear theory. In addition, neutron-rich nuclei play an important role in the astrophysical rapid neutron-capture process (r process). 78Ni is the only doubly magic nucleus that is also an important waiting point in the r process, and serves as a major bottleneck in the synthesis of heavier elements. The half-life of 78Ni has been experimentally deduced for the first time at the Coupled Cyclotron Facility of the National Superconducting Cyclotron Laboratory at Michigan State University, and was found to be 110(+100)(-60) ms. In the same experiment, a first half-life was deduced for 77Ni of 128(+27)(-33) ms, and more precise half-li…

PhysicsCyclotronMagic (programming)General Physics and AstronomyHalf-lifeBeta decaylaw.inventionNuclear physicsmedicine.anatomical_structurelawDouble beta decaymediciner-processAtomic physicsNuclear theoryNucleusPhysical Review Letters
researchProduct