0000000000291603
AUTHOR
E. Aylón
Promoting the activity and selectivity of high surface area Ni–Ce–O mixed oxides by gold deposition for VOC catalytic combustion
Gold supported on nickel cerium oxide catalysts (Ni–Ce–O) have been studied for the total oxidation of propane, as a model for hydrocarbon volatile organic compound emission control. High surface area Ni–Ce–O catalysts were synthesized using a very simple evaporation method, where cerium and nickel salts were evaporated in the presence of a mixture of methanol and oxalic acid. Gold catalysts were prepared following a deposition–precipitation method. A very efficient catalyst for the oxidation of propane, in terms of both activity and selectivity, was obtained. This high activity has been related to the high surface area of the catalyst (and therefore to the presence of more active sites ava…
High activity mesoporous copper doped cerium oxide catalysts for the total oxidation of polyaromatic hydrocarbon pollutants
The doping of mesoporous ceria with copper significantly enhances activity for naphthalene total oxidation, the enhanced performance is controlled by the increased concentration of surface oxygen defects.
Deep oxidation of pollutants using gold deposited on a high surface area cobalt oxide prepared by a nanocasting route.
Gold deposited on a cobalt oxide with high surface area (138 m2 g−1), obtained through a nanocasting route using a siliceous KIT-6 mesoporous material as a hard template, has demonstrated high activity for the total oxidation of propane and toluene, and ambient temperature CO oxidation. The addition of gold promotes the activity when compared to a gold-free Co3O4 catalyst prepared using the same nanocasting technique. The enhanced catalytic activity when gold is present has been explained for the deep oxidation of propane and toluene in terms of the improved reducibility of cobalt oxide when gold is added, rather than to the intrinsic activity of metallic gold particles. The improved behavi…