0000000000291603

AUTHOR

E. Aylón

showing 3 related works from this author

Promoting the activity and selectivity of high surface area Ni–Ce–O mixed oxides by gold deposition for VOC catalytic combustion

2011

Gold supported on nickel cerium oxide catalysts (Ni–Ce–O) have been studied for the total oxidation of propane, as a model for hydrocarbon volatile organic compound emission control. High surface area Ni–Ce–O catalysts were synthesized using a very simple evaporation method, where cerium and nickel salts were evaporated in the presence of a mixture of methanol and oxalic acid. Gold catalysts were prepared following a deposition–precipitation method. A very efficient catalyst for the oxidation of propane, in terms of both activity and selectivity, was obtained. This high activity has been related to the high surface area of the catalyst (and therefore to the presence of more active sites ava…

inorganic chemicalschemistry.chemical_classificationCerium oxideorganic chemicalsGeneral Chemical EngineeringInorganic chemistryOxalic acidchemistry.chemical_elementCatalytic combustionGeneral ChemistryIndustrial and Manufacturing EngineeringCatalysisCeriumchemistry.chemical_compoundNickelHydrocarbonCatalytic oxidationchemistryEnvironmental Chemistryheterocyclic compoundsChemical Engineering Journal
researchProduct

High activity mesoporous copper doped cerium oxide catalysts for the total oxidation of polyaromatic hydrocarbon pollutants

2012

The doping of mesoporous ceria with copper significantly enhances activity for naphthalene total oxidation, the enhanced performance is controlled by the increased concentration of surface oxygen defects.

PollutantCerium oxideInorganic chemistryDopingMetals and Alloyschemistry.chemical_elementGeneral ChemistryCopperCatalysisSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsCatalysischemistry.chemical_compoundchemistryMaterials ChemistryCeramics and CompositesHigh activityMesoporous materialNaphthaleneChemical Communications
researchProduct

Deep oxidation of pollutants using gold deposited on a high surface area cobalt oxide prepared by a nanocasting route.

2011

Gold deposited on a cobalt oxide with high surface area (138 m2 g−1), obtained through a nanocasting route using a siliceous KIT-6 mesoporous material as a hard template, has demonstrated high activity for the total oxidation of propane and toluene, and ambient temperature CO oxidation. The addition of gold promotes the activity when compared to a gold-free Co3O4 catalyst prepared using the same nanocasting technique. The enhanced catalytic activity when gold is present has been explained for the deep oxidation of propane and toluene in terms of the improved reducibility of cobalt oxide when gold is added, rather than to the intrinsic activity of metallic gold particles. The improved behavi…

Environmental EngineeringMaterials scienceSurface PropertiesHealth Toxicology and MutagenesisInorganic chemistryCatalysisCatalysisMetalchemistry.chemical_compoundPropaneEnvironmental ChemistryHigh surface areaNanotechnologyWaste Management and DisposalCobalt oxidePollutantOxidesCobaltPollutionToluenechemistryvisual_artvisual_art.visual_art_mediumEnvironmental PollutantsGoldMesoporous materialOxidation-ReductionJournal of hazardous materials
researchProduct