0000000000291840
AUTHOR
Kristian Handoyo Sugiyarto
X-ray powder diffraction and LIESST-effect of the spin transition material [Fe(bpp)2](NCS)2·2H2O
Abstract We have studied the X-ray powder diffraction of the spin transition material [Fe(bpp)2](NCS)2 · 2H2O (bpp: 2,6-bis(pyrazol-3-yl)pyridine) at room temperature. Two crystallographic phases have been observed depending on the sample history of this material. The results obtained corroborate the earlier observations from magnetic and calorimetric studies. Relatively prolonged exposure of the sample to X-rays caused a structural change. LIESST and Reverse-LIESST effects, characterised by 57Fe Mossbauer spectroscopy, have been observed in this material.
High-Spin → Low-Spin Relaxation in [Fe(bpp)2](CF3SO3)2 H2O after LIESST and Thermal Spin-State Trapping—Dynamics of Spin Transition Versus Dynamics of Phase Transition
The iron(II) complex [Fe(bpp)2]-(CF3SO3)2 H2O (bpp = 2,6-bis(pyrazolyl-3-yl)pyridine) shows a thermal spin transition associated with a hysteresis of approximately 140 K width. The transition temperatures T1/2 (where the fraction of HS species γHS = 0.5) are 147 K and ≈285 K in the cooling and heating directions, respectively. The compound shows the LIESST and reverse-LIESST effects at low temperatures. The relaxation of the metastable HS states generated by LIESST was observed quantitatively at temperatures between 77.5 and 85 K by Mossbauer spectroscopy. Metastable HS states can also be generated by rapid cooling of the sample. The relaxation of the metastable HS states formed by thermal …
Anomalous Spin Transition Observed in Bis(2,6-bis(pyrazol-3-yl)pyridine)iron(II) Thiocyanate Dihydrate
Bis(2,6-bis(pyrazol-3-yl)pyridine)iron(II) thiocyanate dihydrate undergoes a two-step singlet (1A1) ⇄ quintet (5T2) transition in which both steps are associated with thermal hysteresis. Thermal cycling of the sample results in its conversion to a second phase which displays a single-step transition with a very narrow hysteresis loop. This second phase slowly reverts to the initial phase on standing at 300 K. The interconversions are completely reversible. The spin state changes have been monitored by measurement of magnetism and Mossbauer spectra and by differential scanning calorimetry (DSC) studies.