0000000000291855
AUTHOR
Sangtao Yu
Functional significance of the two ACOX1 isoforms and their crosstalks with PPARα and RXRα
Disruption of the peroxisomal acyl-CoA oxidase 1 (Acox1) gene in the mouse results in the development of severe microvesicular hepatic steatosis and sustained activation of peroxisome proliferator-activated receptor-alpha (PPARalpha). These mice manifest spontaneous massive peroxisome proliferation in regenerating hepatocytes and eventually develop hepatocellular carcinomas. Human ACOX1, the first and rate-limiting enzyme of the peroxisomal beta-oxidation pathway, has two isoforms including ACOX1a and ACOX1b, transcribed from a single gene. As ACOX1a shows reduced activity toward palmitoyl-CoA as compared with ACOX1b, we used adenovirally driven ACOX1a and ACOX1b to investigate their effica…
Biochemical characterization of two functional human liver acyl-CoA oxidase isoforms 1a and 1b encoded by a single gene
Abstract Human acyl-CoA oxidase 1 (ACOX1) is a rate-limiting enzyme in peroxisomal fatty acids β-oxidation and its deficiency is associated with a lethal, autosomal recessive disease, called pseudoneonatal-adrenoleukodystrophy. Two mRNA variants, transcribed from a single gene encode ACOX1a or ACOX1b isoforms, respectively. Recently, a mutation in a splice site has been reported [H. Rosewich, H.R. Waterham, R.J. Wanders, S. Ferdinandusse, M. Henneke, D. Hunneman, J. Gartner, Pitfall in metabolic screening in a patient with fatal peroxisomal β-oxidation defect, Neuropediatrics 37 (2006) 95–98.], which results in the defective peroxisomal fatty acids β-oxidation. Here, we show that these mRNA…