0000000000291858
AUTHOR
Navin Viswakarma
Functional significance of the two ACOX1 isoforms and their crosstalks with PPARα and RXRα
Disruption of the peroxisomal acyl-CoA oxidase 1 (Acox1) gene in the mouse results in the development of severe microvesicular hepatic steatosis and sustained activation of peroxisome proliferator-activated receptor-alpha (PPARalpha). These mice manifest spontaneous massive peroxisome proliferation in regenerating hepatocytes and eventually develop hepatocellular carcinomas. Human ACOX1, the first and rate-limiting enzyme of the peroxisomal beta-oxidation pathway, has two isoforms including ACOX1a and ACOX1b, transcribed from a single gene. As ACOX1a shows reduced activity toward palmitoyl-CoA as compared with ACOX1b, we used adenovirally driven ACOX1a and ACOX1b to investigate their effica…
Progressive Endoplasmic Reticulum Stress Contributes to Hepatocarcinogenesis in Fatty Acyl-CoA Oxidase 1–Deficient Mice
Fatty acyl-coenzyme A oxidase 1 (ACOX1) knockout (ACOX1(-/-)) mice manifest hepatic metabolic derangements that lead to the development of steatohepatitis, hepatocellular regeneration, spontaneous peroxisome proliferation, and hepatocellular carcinomas. Deficiency of ACOX1 results in unmetabolized substrates of this enzyme that function as biological ligands for peroxisome proliferator-activated receptor-α (PPARα) in liver. Here we demonstrate that sustained activation of PPARα in ACOX1(-/-) mouse liver by these ACOX1 substrates results in endoplasmic reticulum (ER) stress. Overexpression of transcriptional regulator p8 and its ER stress-related effectors such as the pseudokinase tribbles h…