0000000000291905

AUTHOR

Rosa M. Peris

The rate of multiplicity of the roots of nonlinear equations and its application to iterative methods

Nonsimple roots of nonlinear equations present some challenges for classic iterative methods, such as instability or slow, if any, convergence. As a consequence, they require a greater computational cost, depending on the knowledge of the order of multiplicity of the roots. In this paper, we introduce dimensionless function, called rate of multiplicity, which estimates the order of multiplicity of the roots, as a dynamic global concept, in order to accelerate iterative processes. This rate works not only with integer but also fractional order of multiplicity and even with poles (negative order of multiplicity).

research product

A class of third order iterative Kurchatov–Steffensen (derivative free) methods for solving nonlinear equations

Abstract In this paper we show a strategy to devise third order iterative methods based on classic second order ones such as Steffensen’s and Kurchatov’s. These methods do not require the evaluation of derivatives, as opposed to Newton or other well known third order methods such as Halley or Chebyshev. Some theoretical results on convergence will be stated, and illustrated through examples. These methods are useful when the functions are not regular or the evaluation of their derivatives is costly. Furthermore, special features as stability, laterality (asymmetry) and other properties can be addressed by choosing adequate nodes in the design of the methods.

research product

The convergence of the perturbed Newton method and its application for ill-conditioned problems

Abstract Iterative methods, such as Newton’s, behave poorly when solving ill-conditioned problems: they become slow (first order), and decrease their accuracy. In this paper we analyze deeply and widely the convergence of a modified Newton method, which we call perturbed Newton, in order to overcome the usual disadvantages Newton’s one presents. The basic point of this method is the dependence of a parameter affording a degree of freedom that introduces regularization. Choices for that parameter are proposed. The theoretical analysis will be illustrated through examples.

research product