0000000000291908

AUTHOR

Damien Brissinger

Unguided plasmon-mode resonance in optically excited thin film: exact modal description of Kretschmann–Raether experiment

With the aim of studying electromagnetic surface wave resonance, we rigorously solve the homogeneous and inhomogeneous problem associated with an optically excited thin metallic film. We then demonstrate unambiguously that the excited eigenmode engendering plasmonic resonance in the so-called Kretschmann–Raether configuration is an unguided mode (i.e., with an anti-evanescent structure). This result, challenging the classical interpretation of the outgoing wave condition applied to surface waves, permits a quantitative interpretation of the attenuated total reflection curves.

research product

Near-field control of optical bistability in a nanocavity

Micro- and nanocavities allow for strong light confinement in very small volume [1]. They give opportunities for new experiments such as cavity quantum electrodynamics, waveguiding, light slowing or trapping…[2] The increase of the electromagnetic (EM) field in the cavity enhances the interaction between light and matter, resulting in the possible observation of nonlinear effects [3]. Several studies have recently been published on the observation and characterisation of nonlinear silicon cavities [4]. As a step further, we propose and demonstrate the feasibility of an innovative way to mechanically control the bistable operating regime of a nanovavity. Using a near-field tip, we switch the…

research product

Discontinuity induced angular distribution of photon plasmon coupling

Metal-dielectric transitions are important structures that can display a host of optical characteristics including excitation of plasmons. Metal-dielectric discontinuities can furthermore support plasmon excitation without a severe condition on the incident angle of the exciting photons. Using a semi-infinite thin gold film, we study surface plasmon (SP) excitation and the associated electromagnetic near-field distribution by recording the resulting plasmon interference patterns. In particular, we measure interference periods involving SPs at the scanable metal/air interface and the buried metal/glass one. Supported by optical near-field simulations and experiments, we demonstrate that the …

research product