0000000000292044
AUTHOR
Miloslav Znojil
The Dynamical Problem for a Non Self-adjoint Hamiltonian
After a compact overview of the standard mathematical presentations of the formalism of quantum mechanics using the language of C*- algebras and/or the language of Hilbert spaces we turn attention to the possible use of the language of Krein spaces.I n the context of the so-called three-Hilbert-space scenario involving the so-called PT-symmetric or quasi- Hermitian quantum models a few recent results are reviewed from this point of view, with particular focus on the quantum dynamics in the Schrodinger and Heisenberg representations.
A family of complex potentials with real spectrum
We consider a two-parameter non-Hermitian quantum mechanical Hamiltonian operator that is invariant under the combined effects of parity and time reversal transformations. Numerical investigation shows that for some values of the potential parameters the Hamiltonian operator supports real eigenvalues and localized eigenfunctions. In contrast with other parity times time reversal symmetric models which require special integration paths in the complex plane, our model is integrable along a line parallel to the real axis.
Riccati-Padé quantization and oscillatorsV(r)=grα
We develop an alternative construction of bound states based on matching the Riccati threshold and asymptotic expansions via their two-point Pad\'e interpolation. As a form of quantization it gives highly accurate eigenvalues and eigenfunctions.
Non linear pseudo-bosons versus hidden Hermiticity. II: The case of unbounded operators
Parallels between the notions of nonlinear pseudobosons and of an apparent non-Hermiticity of observables as shown in paper I (arXiv: 1109.0605) are demonstrated to survive the transition to the quantum models based on the use of unbounded metric in the Hilbert space of states.
Non linear pseudo-bosons versus hidden Hermiticity
The increasingly popular concept of a hidden Hermiticity of operators (i.e., of their Hermiticity with respect to an {\it ad hoc} inner product in Hilbert space) is compared with the recently introduced notion of {\em non-linear pseudo-bosons}. The formal equivalence between these two notions is deduced under very general assumptions. Examples of their applicability in quantum mechanics are discussed.
Strong-coupling expansions for the -symmetric oscillators
We study the traditional problem of convergence of perturbation expansions when the hermiticity of the Hamiltonian is relaxed to a weaker symmetry. An elementary and quite exceptional cubic anharmonic oscillator is chosen as an illustrative example of such models. We describe its perturbative features paying particular attention to the strong-coupling regime. Efficient numerical perturbation theory proves suitable for such a purpose.