0000000000292094
AUTHOR
J Modniks
Modeling the nonlinear deformation of flax-fiber-reinforced polymer matrix laminates in active loading
In an attempt to fully utilize the mechanical properties of bast fibers in polymer-matrix composites, unidirectional (UD) or quasi-UD flax-fiber-reinforced composites are being developed and characterized. Their response in tension is markedly nonlinear both in on- and off-axis loading. A semiempirical tensor-linear model is applied to describe such deformation nonlinearity in active combined loading. The deformation model of UD ply, combined with an elementary laminate theory, is used to predict the stress–strain curves of laminated composites in tension. Reasonable accuracy of prediction is demonstrated for fiber-dominated layups.
Analysis of the effect of a stress raiser on the strength of a UD flax/epoxy composite in off-axis tension
The effect of stress raisers in the form of a slit-like notch and an open circular hole on the tensile strength of a quasi-UD flax-fiber-reinforced composite is studied experimentally. A finite fracture mechanics approach is applied to determine the intralaminar fracture toughness of the composite and to predict the strength in the presence of stress concentration. Reasonably good agreement of the notch effect predicted using finite fracture mechanics with a coupled strength and toughness fracture criterion and test results is demonstrated.