0000000000292321
AUTHOR
A. Gillitzer
Resonances in QCD
We report on the EMMI Rapid Reaction Task Force meeting 'Resonances in QCD', which took place at GSI October 12-14, 2015. A group of 26 people met to discuss the physics of resonances in QCD. The aim of the meeting was defined by the following three key questions: What is needed to understand the physics of resonances in QCD? Where does QCD lead us to expect resonances with exotic quantum numbers? What experimental efforts are required to arrive at a coherent picture? For light mesons and baryons only those with ${\it up}$, ${\it down}$ and ${\it strange}$ quark content were considered. For heavy-light and heavy-heavy meson systems, those with ${\it charm}$ quarks were the focus. This docum…
Feasibility study for the measurement of πN transition distribution amplitudes at P¯ANDA in p¯p→J/ψπ0
The exclusive charmonium production process in (P) over barp annihilation with an associated pi 0 meson (p) over barp -> J/psi pi(0) is studied in the framework of QCD collinear factorization. The feasibility of measuring this reaction through the J/psi -> e(+) e(-) decay channel with the AntiProton ANnihilation at DArmstadt ((P) over bar ANDA) experiment is investigated. Simulations on signal reconstruction efficiency as well as the background rejection from various sources including the (P) over barp -> pi(+)pi(-)pi(0) and (p) over barp -> J/psi pi(0)pi(0) reactions are performed with PANDAROOT, the simulation and analysis software framework of the (P) over bar ANDA experiment. It is show…
Study of doubly strange systems using stored antiprotons
Bound nuclear systems with two units of strangeness are still poorly known despite their importance for many strong interaction phenomena. Stored antiprotons beams in the GeV range represent an unparalleled factory for various hyperon-antihyperon pairs. Their outstanding large production probability in antiproton collisions will open the floodgates for a series of new studies of systems which contain two or even more units of strangeness at the PANDA experiment at FAIR. For the first time, high resolution gamma-spectroscopy of doubly strange Lambda Lambda-hypernuclei will be performed, thus complementing measurements of ground state decays of Lambda Lambda-hypernuclei at J-PARC or possible …
Proton Inelastic Scattering onNi56in Inverse Kinematics
Inelastic proton scattering to the first excited ${2}^{+}$ state of the doubly magic $^{56}\mathrm{Ni}$ nucleus was investigated in inverse kinematics, using a secondary beam of radioactive $^{56}\mathrm{Ni}$ nuclei. At an incident energy of 101 MeV/nucleon, a value $B(E2,{0}^{+}\ensuremath{\rightarrow}{2}^{+})=600\ifmmode\pm\else\textpm\fi{}120 {e}^{2}$ ${\mathrm{fm}}^{4}$ was measured. This result completes the set of experimental data for the first excited ${2}^{+}$ states in the $1f\ensuremath{-}2p$ shell with a closed shell of neutrons or protons. These data are compared to recent shell-model calculations.
Physics with Antiprotons at the Future GSI Facility
Recently GSI presented the plans for a major new international research facility (http://www.gsi.de/GSI-future/). Highly luminous secondary beams with excellent quality encompassing the production of antiprotons will be delivered. In a High Energy Storage Ring (HESR) with a bending power of 50 Tm antiprotons will be cooled either stochastically or by electrons. The envisaged limits are a momentum range of 1.5 to 15 GeV/c and a luminosity of 2 × 1032 cm-2 s-1. Four major physical research goals can be addressed: high precision charmonium spectroscopy, medium effects of open and hidden charm, the search for glueballs and hybrids, and the production of hypernuclei.