0000000000292429

AUTHOR

Aki Mikkola

0000-0003-2762-8503

Walking and Running Require Greater Effort from the Ankle than the Knee Extensor Muscles.

The knee and ankle extensors as human primary antigravity muscle groups are of utmost importance in a wide range of locomotor activities. Yet, we know surprisingly little about how these muscle groups work, and specifically, how close to their maximal capacities they function across different modes and intensity of locomotion. Therefore, to advance our understanding of locomotor constraints, we determined and compared relative operating efforts of the knee and ankle extensors during walking, running, and sprinting.Using an inverse dynamics biomechanical analysis, the muscle forces of the knee and ankle extensors during walking (1.6 m·s), running (4.1 m·s), and sprinting (9.3 m·s) were quant…

research product

A Simple Multibody Dynamic Model of Cross-Country Ski-Skating

The purpose of this paper is to present the development of a simple multibody dynamic model matching the observed movements of the center of mass of a skier performing the skating technique in cross-country skiing. The formulation of the equation of motion was made using the Euler–Lagrange equations applied to a multibody tree-type system in three dimensions. The description of the lower limb of the skier and the ski was completed by employing three bodies, one representing the ski, and two representing the natural movements of the leg of the skier. This simple model is able to show an approximation of the movement of the center of mass of the skier and its velocity behavior allowing to stu…

research product

Comments on the article titled ‘Component mode synthesis approach to estimate tibial strains in gait’,Journal of Medical Engineering & Technology, 33, pp. 488–495, 2009

In a recent article published in the Journal of Medical Engineering & Technology, Gaofeng et al. [1] claimed that they were the first to propose the flexible multibody simulation approach (i.e. flo...

research product

Flexible multibody simulation approach in the analysis of tibial strain during walking.

Strains within the bone tissue play a major role in bone (re)modeling. These small strains can be assessed using experimental strain gage measurements, which are challenging and invasive. Further, the strain measurements are, in practise, limited to certain regions of superficial bones only, such as the anterior surface of the tibia. In this study, tibial strains occurring during walking were estimated using a numerical approach based on flexible multibody dynamics. In the introduced approach, a lower body musculoskeletal model was developed by employing motion capture data obtained from walking at a constant velocity. The motion capture data were used in inverse dynamics simulation to teac…

research product

A Dynamic Simulation of a Human Gait Using the Hybrid Muscle Model and a QCT-Based Flexible Tibia

The flexible multibody simulation [9] approach can be used in a wide variety of engineering applications. In a previous study of authors [1], flexible multibody simulation approach was used to estimate strains during walking at tibial midshaft. In the previous study, simple muscle models were used in conjunction with a flexible tibia model based on magnetic resonance images (MRI). This study is an extension of the previous developments [1], [2] demonstrating the potential of model improvement by introducing hybrid muscle models, along with the flexible tibia based model on computed tomography (CT). The computed tomography technique allows for the accounting of inhomogeneous density and elas…

research product

Which muscles compromise human locomotor performance with age?

Ageing leads to a progressive decline in human locomotor performance. However, it is not known whether this decline results from reduced joint moment and power generation of all lower limb muscle groups or just some of them. To further our understanding of age-related locomotor decline, we compare the amounts of joint moments and powers generated by lower limb muscles during walking (self-selected), running (4 m s −1 ) and sprinting (maximal speed) among young, middle-aged and old adults. We find that age-related deficit in ankle plantarflexor moment and power generation becomes more severe as locomotion change from walking to running to sprinting. As a result, old adults generate more pow…

research product

Ankle and knee extensor muscle effort during locomotion in young and older athletes : Implications for understanding age-related locomotor decline

AbstractAge-related reduction in muscle force generation capacity is similarly evident across different lower limb muscle groups, yet decline in locomotor performance with age has been shown to depend primarily on reduced ankle extensor muscle function. To better understand why ageing has the largest detrimental effect on ankle joint function during locomotion, we examined maximal ankle and knee extensor force development during a two-leg hopping test in older and young men, and used these forces as a reference to calculate relative operating efforts for the knee and ankle extensors as participants walked, ran and sprinted. We found that, across locomotion modes in both age groups, ankle ex…

research product

A full body musculoskeletal model based on flexible multibody simulation approach utilised in bone strain analysis during human locomotion

Load-induced strains applied to bone can stimulate its development and adaptation. In order to quantify the incident strains within the skeleton, in vivo implementation of strain gauges on the surfaces of bone is typically used. However, in vivo strain measurements require invasive methodology that is challenging and limited to certain regions of superficial bones only such as the anterior surface of the tibia. Based on our previous study [Al Nazer et al. (2008) J Biomech. 41:1036-1043], an alternative numerical approach to analyse in vivo strains based on the flexible multibody simulation approach was proposed. The purpose of this study was to extend the idea of using the flexible multibod…

research product

A Simple Mechanical Model for Simulating Cross-Country Skiing Propulsive Force

In this paper, a three-dimensional multibody dynamic model of a cross-country skier is developed and presented where a single propulsion phase is modeled to obtain the kinetic parameters involved in the movement. A professional Olympic-level skier performed the skating technique without poles in a ski tunnel under controlled conditions and on an incline plane. Then, with the use of a force acquisition system attached to the ski bindings and a motion capture system set on site, the leg resultant forces and the movement of specific points of the skier’s lower body were acquired. The data obtained from the motion capture system was used as the prescribed kinematic input data in the multibody m…

research product

Whole body frontal plane mechanics across walking, running, and sprinting in young and older adults

This study investigated the whole body frontal plane mechanics among young (26 ± 6 years), early old (61 ± 5 years), and old (78 ± 4 years) adults during walking, running, and sprinting. The age-groups had similar walking (1.6 m/s) and running (4.0 m/s) speeds, but different maximal sprinting speed (young 9.3 m/s, early old 7.9 m/s, and old 6.6 m/s). Surprisingly, although the old group exerted much lower vertical ground reaction force during running and sprinting, the hip frontal plane moment did not differ between the age-groups. Kinematic analysis demonstrated increased hip adduction and pelvis drop, as well as reduced trunk lateral flexion among old adults, especially during sprinting. …

research product