Reverse and normal drag along a fault
An analysis of the theoretical displacement field around a single dip-slip fault at depth reveals that normal and reverse fault drag develop by perturbation flow induced by fault slip. We analytically model the heterogeneous part of the instantaneous displacement field of an isolated two-dimensional mode II fault in an infinite, homogeneous elastic body in response to fault slip. Material on both sides of the fault is displaced and ‘opposing circulation cells’ arise on opposite sides of the fault, with displacement magnitudes increasing towards the center of the fault. Both normal and reverse drag can develop at the fault center depending on the angle between the markers and the fault; norm…