0000000000293311

AUTHOR

Erik Panzer

0000-0002-9897-5812

A quasi-finite basis for multi-loop Feynman integrals

We present a new method for the decomposition of multi-loop Euclidean Feynman integrals into quasi-finite Feynman integrals. These are defined in shifted dimensions with higher powers of the propagators, make explicit both infrared and ultraviolet divergences, and allow for an immediate and trivial expansion in the parameter of dimensional regularization. Our approach avoids the introduction of spurious structures and thereby leaves integrals particularly accessible to direct analytical integration techniques. Alternatively, the resulting convergent Feynman parameter integrals may be evaluated numerically. Our approach is guided by previous work by the second author but overcomes practical …

research product

Computation of form factors in massless QCD with finite master integrals

We present the bare one-, two-, and three-loop form factors in massless Quantum Chromodynamics as linear combinations of finite master integrals. Using symbolic integration, we compute their $\epsilon$ expansions and thereby reproduce all known results with an independent method. Remarkably, in our finite basis, only integrals with a less-than-maximal number of propagators contribute to the cusp anomalous dimensions. We report on indications of this phenomenon at four loops, including the result for a finite, irreducible, twelve-propagator form factor integral. Together with this article, we provide our automated software setup for the computation of finite master integrals.

research product