Human Achilles tendon glycation and function in diabetes
Diabetic patients have an increased risk of foot ulcers, and glycation of collagen may increase tissue stiffness. We hypothesized that the level of glycemic control (glycation) may affect Achilles tendon stiffness, which can influence gait pattern. We therefore investigated the relationship between collagen glycation, Achilles tendon stiffness parameters, and plantar pressure in poorly ( n = 22) and well ( n = 22) controlled diabetic patients, including healthy age-matched (45–70 yr) controls ( n = 11). There were no differences in any of the outcome parameters (collagen cross-linking or tendon stiffness) between patients with well-controlled and poorly controlled diabetes. The overall effe…
Impact of oral contraceptive use and menstrual phases on patellar tendon morphology, biochemical composition, and biomechanical properties in female athletes
Sex differences exist with regards to ligament and tendon injuries. Lower collagen synthesis has been observed in exercising women vs. men, and in users of oral contraceptives (OC) vs. nonusers, but it is unknown if OC will influence tendon biomechanics of women undergoing regular training. Thirty female athletes (handball players, 18–30 yr) were recruited: 15 long-term users of OC (7.0 ± 0.6 yr) and 15 nonusers (>5 yr). Synchronized values of patellar tendon elongation (obtained by ultrasonography) and tendon force were sampled during ramped isometric knee extensor maximum voluntary contraction to estimate mechanical tendon properties. Furthermore, tendon cross-sectional area and lengt…
Lower strength of the human posterior patellar tendon seems unrelated to mature collagen cross-linking and fibril morphology
The human patellar tendon is frequently affected by tendinopathy, but the etiology of the condition is not established, although differential loading of the anterior and posterior tendon may be associated with the condition. We hypothesized that changes in fibril morphology and collagen cross-linking would parallel differences in material strength between the anterior and posterior tendon. Tendon fascicles were obtained from elective ACL surgery patients and tested micromechanically. Transmission electron microscopy was used to assess fibril morphology, and collagen cross-linking was determined by HPLC and calorimetry. Anterior fascicles were markedly stronger (peak stress: 54.3 ± 21.2 vs.…
Micromechanical Properties and Collagen Composition of Ruptured Human Achilles Tendon
Background:The Achilles tendon is one of the strongest tendons in the human body, and yet it frequently ruptures, which is a substantial clinical problem. However, the cause of ruptures remains elusive.Hypothesis:Ruptured human Achilles tendon displays inferior biomechanical properties and altered collagen composition compared with noninjured tendon.Study Design:Controlled laboratory study.Methods:Biopsy specimens were obtained at the rupture site and the noninjured part of the tendon (internal controls) in 17 patients with acute Achilles tendon rupture. Age- and weight-matched human cadaveric Achilles tendons (external controls) were also obtained. Tendon samples were tested micromechanica…
Mechanical Properties of Human Patellar Tendon at the Hierarchical levels of Tendon and Fibril
Tendons are strong hierarchical structures, but how tensile forces are transmitted between different levels remains incompletely understood. Collagen fibrils are thought to be primary determinants of whole tendon properties, and therefore we hypothesized that the whole human patellar tendon and its distinct collagen fibrils would display similar mechanical properties. Human patellar tendons ( n = 5) were mechanically tested in vivo by ultrasonography. Biopsies were obtained from each tendon, and individual collagen fibrils were dissected and tested mechanically by atomic force microscopy. The Young's modulus was 2.0 ± 0.5 GPa, and the toe region reached 3.3 ± 1.9% strain in whole patellar …
Comparison of ground reaction forces and antagonist muscle coactivation during stair walking with ageing
Abstract Stair walking is a demanding task in old age. Ground reaction force (GRF) analysis, relative EMG activation, and muscular coactivation were performed during stair walking. The aim was to investigate the ageing effect on GRF distribution and muscle antagonist coactivation during stair walking, at varied speed. During ascending at maximal velocity old subjects demonstrated reduced GRF in all examined phases (range: 28–35%), whereas muscle coactivation only was elevated for the Entire stance phase (18.5%). GRF parameters during ascent and descent at freely chosen speed demonstrated differences between age groups (5–28%). Furthermore, muscle coactivation was elevated in old subjects (e…
Corticosteroid injections, eccentric decline squat training and heavy slow resistance training in patellar tendinopathy.
Udgivelsesdato: Sep-28 A randomized-controlled single-blind trial was conducted to investigate the clinical, structural and functional effects of peritendinous corticosteroid injections (CORT), eccentric decline squat training (ECC) and heavy slow resistance training (HSR) in patellar tendinopathy. Thirty-nine male patients were randomized to CORT, ECC or HSR for 12 weeks. We assessed function and symptoms (VISA-p questionnaire), tendon pain during activity (VAS), treatment satisfaction, tendon swelling, tendon vascularization, tendon mechanical properties and collagen crosslink properties. Assessments were made at 0 weeks, 12 weeks and at follow-up (half-year). All groups improved in VISA-…
The influence of physical activity during youth on structural and functional properties of the Achilles tendon
Achilles tendinopathy is a highly prevalent sports injury. Animal studies show a growth response in tendons in response to loading in the immature phase but not after puberty maturation. The aim of this investigation was to examine the structural and material properties in long distance runners who were either physically active (HAY) or inactive (LAY) in young age. Twelve men in HAY group and eight men in LAY group participated. Structural, functional, and biochemical properties of Achilles tendon were estimated from magnetic resonance imaging, ultrasound video recordings, mechanical tests, and tendon biopsies, respectively. There was no difference between the groups with respect to tendon …