0000000000293853
AUTHOR
Nilza Bachinski
A galectin links the aggregation factor to cells in the sponge (Geodia cydonium) system.
The cDNA for the full-length lectin from the marine sponge Geodia cydonium was cloned. Analysis of the deduced aa sequence revealed that this lectin belongs to the group of galectins. The full-length galectin, which was obtained also in a recombinant form, has an M(r) of 20,877; in the processed form it is a 15 kDa polypeptide. The enriched aggregation factor from G.cydonium also was determined to contain, besides minimal amounts of the galectin, a 140 kDa polypeptide which is involved in cell-cell adhesion. Monoclonal antibodies have been raised against this protein; Fab' fragments prepared from them abolished cell-cell reaggregation. Cell reaggregation experiments revealed that the aggreg…
Immediate early response of the marine sponge Suberites domuncula to heat stress: Reduction of trehalose and glutathione concentrations and glutathione S-transferase activity
The marine sponge Suberites domuncula was used to identify early markers for thermal stress. Cubes from sponges have been kept for 30 min at 31°C (10 °C higher than the ambient temperature). After this treatment the sponge cubes were kept again at 21°C. To demonstrate that the animals reacted to the elevated temperature, the expression of heat shock protein (HSP) was determined. Using an antibody raised against HSP70, it was found by Western blotting that the animals specifically express a 45 kDa polypeptide after heat treatment. It was shown that even after 10 min of heat treatment the steady-state concentration of trehalose drops by 40% from a base level of 13 nmol/mg protein. The activit…
Purification and characterization of two exopolyphosphatases from the marine sponge Tethya lyncurium
Abstract Two exopolyphosphatases (exopolyphosphatase I and II; EC 3.6.1.11) which release orthophosphate from inorganic polyphosphates have been detected and purified for the first time from a marine sponge, Tethya lyncurium . Exopolyphosphatase I has a molecular mass of 45 kDa, a pH optimum of 5.0 and does not require divalent cations for activity, while exopolyphosphatase II has a molecular mass of 70 kDa, a pH optimum of 7.5 and displays optimal activity in the presence of Mg 2+ ions. Final purification of the enzymes could be achieved by affinity chromatography on polyphosphate-modified zirconia. The mode of action of both enzymes was found to be processive. Orthophosphate is the sole p…
Inorganic polyphosphates in the developing freshwater spongeEphydatia muelleri: Effect of stress by polluted waters
Relatively high amounts of inorganic polyphosphates (approximately 55 μg of polyphosphate/g of wet weight) were found in the freshwater sponge Ephydatia muelleri, particularly in the gemmules (260 μg/g). Here we report that the polyphosphate content of this sponge changes during development and in response to adverse environmental conditions. Germination and hatching of gemmules of E. muelleri is accompanied by a strong decrease (by 94% at day 2) in polyphosphate level and a rise in exopolyphosphatase activity. On the other hand, induction of gemmulogenesis by theophylline results in an increase (by 61%) in polyphosphate content of sponge tissue. An increase in polyphosphate content and a d…