0000000000293854

AUTHOR

Paola Misso

showing 9 related works from this author

Algebras with involution with linear codimension growth

2006

AbstractWe study the ∗-varieties of associative algebras with involution over a field of characteristic zero which are generated by a finite-dimensional algebra. In this setting we give a list of algebras classifying all such ∗-varieties whose sequence of ∗-codimensions is linearly bounded. Moreover, we exhibit a finite list of algebras to be excluded from the ∗-varieties with such property. As a consequence, we find all possible linearly bounded ∗-codimension sequences.

Discrete mathematicsPure mathematicsJordan algebraAlgebra and Number TheoryNon-associative algebraSubalgebraQuadratic algebra∗-CodimensionsSettore MAT/02 - AlgebraInterior algebra*-polynomial identity T*-ideal *-codimensions.∗-Polynomial identityT∗-idealDivision algebraAlgebra representationNest algebraMathematics
researchProduct

A note on strongly Lie nilpotency

1991

In this note the authors studies strongly Lie nilpotent rings and proves that if a ringR is strongly Lie nilpotent thenR(2), the ideal generated by all commutators, is nilpotent.

Discrete mathematicsPure mathematicsMathematics::Commutative AlgebraGeneral MathematicsSimple Lie groupMathematics::Rings and AlgebrasAdjoint representationCentral seriesMathematics::Group TheoryNilpotentIdeal (ring theory)Algebra over a fieldNilpotent groupMathematics::Representation TheoryMathematicsRendiconti del Circolo Matematico di Palermo
researchProduct

Polynomial identities on superalgebras: Classifying linear growth

2006

Abstract We classify, up to PI-equivalence, the superalgebras over a field of characteristic zero whose sequence of codimensions is linearly bounded. As a consequence we determine the linear functions describing the graded codimensions of a superalgebra.

Discrete mathematicsPolynomialPure mathematicsSequenceAlgebra and Number TheoryMathematics::Commutative AlgebraMathematics::Rings and AlgebrasZero (complex analysis)Field (mathematics)graded polynomial identity T_2-ideal graded codimensionsSuperalgebraSettore MAT/02 - AlgebraMathematics::Quantum AlgebraBounded functionMathematics::Representation TheoryLinear growthMathematicsJournal of Pure and Applied Algebra
researchProduct

Prime Rings Whose Units Satisfy a Group Identity. II

2003

Abstract Let R be a prime ring and 𝒰(R) its group of units. We prove that if 𝒰(R) satisfies a group identity and 𝒰(R) generates R,then either R is a domain or R is isomorphic to the algebra of n × n matrices over a finite field of order d. Moreover the integers n and d depend only on the group identity satisfed by 𝒰(R). This result has been recently proved by C. H. Liu and T. K. Lee (Liu,C. H.; Lee,T. K. Group identities and prime rings generated by units. Comm. Algebra (to appear)) and here we present a new different proof.

Discrete mathematicsAssociated primeAlgebra and Number TheoryFinite fieldGroup (mathematics)Prime ringA domainOrder (group theory)SubringPrime (order theory)MathematicsCommunications in Algebra
researchProduct

Commutativity conditions on rings

1991

We prove the following result: let R be an arbitrary ring with centre Z such that for every x, y ∈ R, there exists a positive integer n = n(x, y) ≥ 1 such that (xy)n − ynxn ∈ Z and (yx)n − xnyn ∈ Z; then, if R has no non-zero nil ideals, R is commutative. We also prove a result on commutativity of general rings: if R is r!-torsion free and for all x, y ∈ R, [xr, ys] = 0 for fixed integers r ≥ s ≥ 1, then R is commutative. As a corollary we obtain that if R is (n + 1)!-torsion free and there exists a fixed n ≥ 1 such that (xy)n − ynxn = (yx)n − xnyn ∈ Z for all x, y ∈ R, then R is commutative.

Pure mathematicsGeneral MathematicsCommutative propertyMathematicsBulletin of the Australian Mathematical Society
researchProduct

Polynomial growth and identities of superalgebras and star-algebras

2009

Abstract We study associative algebras with 1 endowed with an automorphism or antiautomorphism φ of order 2, i.e., superalgebras and algebras with involution. For any fixed k ≥ 1 , we construct associative φ -algebras whose φ -codimension sequence is given asymptotically by a polynomial of degree k whose leading coefficient is the largest or smallest possible.

Discrete mathematicsInvolution (mathematics)Settore MAT/02 - AlgebraPure mathematicsAlgebra and Number TheoryCodimensionAutomorphismAssociative property\varphi$-identity $T^\varphi$-ideal $\varphi$-codimensions growthMathematicsJournal of Pure and Applied Algebra
researchProduct

On algebras and superalgebras with linear codimension growth

2006

We present the classification, up to PI-equivalence, of the algebras over a field of characteristic zero whose sequence of codimensions is linearly bounded. We also describe the generalization of this result in the setting of superalgebras and their graded identities. As a consequence we determine all linear functions describing the ordinary codimensions and the graded codimensions of a given algebra.

superalgebra
researchProduct

Derivations on a Lie Ideal

1988

AbstractIn this paper we prove the following result: let R be a prime ring with no non-zero nil left ideals whose characteristic is different from 2 and let U be a non central Lie ideal of R.If d ≠ 0 is a derivation of R such that d(u) is invertible or nilpotent for all u ∈ U, then either R is a division ring or R is the 2 X 2 matrices over a division ring. Moreover in the last case if the division ring is non commutative, then d is an inner derivation of R.

Discrete mathematicsPure mathematicsGeneral Mathematics010102 general mathematics010103 numerical & computational mathematics01 natural sciencesLie conformal algebralaw.inventionNilpotentInvertible matrixlawPrime ringDivision ringIdeal (ring theory)0101 mathematicsCommutative propertyMathematicsCanadian Mathematical Bulletin
researchProduct

Varieties of superalgebras of linear growth

2005

researchProduct