0000000000293884

AUTHOR

Louis F. Reichardt

showing 3 related works from this author

Glial precursors clear sensory neuron corpses during development via Jedi-1, an engulfment receptor

2009

During the development of peripheral ganglia, 50% of the neurons that are generated undergo apoptosis. How the massive numbers of corpses are removed is unknown. We found that satellite glial cell precursors are the primary phagocytic cells for apoptotic corpse removal in developing mouse dorsal root ganglia (DRG). Confocal and electron microscopic analysis revealed that glial precursors, rather than macrophages, were responsible for clearing most of the dead DRG neurons. Moreover, we identified Jedi-1, an engulfment receptor, and MEGF10, a purported engulfment receptor, as homologs of the invertebrate engulfment receptors Draper and CED-1 expressed in the glial precursor cells. Expression …

Nervous systemSensory Receptor CellsGreen Fluorescent ProteinsApoptosisMice TransgenicBiologyKidneyArticleMice03 medical and health sciences0302 clinical medicinePhagocytosisPregnancyGanglia SpinalNerve Growth FactormedicineAnimalsHumansCells Cultured030304 developmental biology0303 health sciencesSatellite glial cellStem CellsGeneral NeuroscienceNeurodegenerationGene Expression Regulation DevelopmentalMembrane ProteinsFibroblastsmedicine.diseaseOligodendrocyteSensory neuronmedicine.anatomical_structurenervous systemNeurogliaFemaleNeuronNeurogliaNeuroscience030217 neurology & neurosurgeryAstrocyteNature Neuroscience
researchProduct

Spatial shaping of cochlear innervation by temporally regulated neurotrophin expression.

2001

Previous work suggested qualitatively different effects of neurotrophin 3 (NT-3) in cochlear innervation patterning in different null mutants. We now show that all NT-3 null mutants have a similar phenotype and lose all neurons in the basal turn of the cochlea. To understand these longitudinal deficits in neurotrophin mutants, we have compared the development of the deficit in the NT-3 mutant to the spatial–temporal expression patterns of brain-derived neurotrophic factor (BDNF) and NT-3, using lacZ reporters in each gene and with expression of the specific neurotrophin receptors, trkB and trkC. In the NT-3 mutant, almost normal numbers of spiral ganglion neurons form, but fiber outgrowth t…

HeterozygoteCell SurvivalCell CountNeurotrophin-3Tropomyosin receptor kinase BTropomyosin receptor kinase CArticleMiceNeurotrophin 3Neurotrophic factorsGenes ReportermedicineAnimalsReceptor trkBReceptor trkCNeurons AfferentCochleaSpiral ganglionBrain-derived neurotrophic factorAfferent PathwaysbiologyGeneral NeuroscienceBrain-Derived Neurotrophic FactorHomozygoteGene Expression Regulation DevelopmentalImmunohistochemistryMice Mutant StrainsCochleamedicine.anatomical_structurePhenotypenervous systemAnimals NewbornLac OperonMutationbiology.proteinSpiral GanglionNeuroscienceNeurotrophin
researchProduct

Development and evolution of inner ear sensory epithelia and their innervation

2002

The development and evolution of the inner ear sensory patches and their innervation is reviewed. Recent molecular developmental data suggest that development of these sensory patches is a developmental recapitulation of the evolutionary history. These data suggest that the ear generates multiple, functionally diverse sensory epithelia by dividing a single sensory primordium. Those epithelia will establish distinct identities through the overlapping expression of genes of which only a few are currently known. One of these distinctions is the unique pattern of hair cell polarity. A hypothesis is presented on how the hair cell polarity may relate to the progressive segregation of the six sens…

Vestibular systemNeuroDSensory neuron migrationGeneral NeuroscienceSensory systemBiologyCellular and Molecular Neurosciencemedicine.anatomical_structuremedicinebiology.proteinInner earHair cellNeuroscienceCochleaNeurotrophinJournal of Neurobiology
researchProduct