0000000000293918

AUTHOR

Srikanth Sugavanam

Dissipative Optical Breather Molecular Complexes

We demonstrate different types of breathing soliton complexes in a mode-locked fibre laser: multi-breather molecules, and molecular complexes arising from the binding of two breather-pair molecules or a breather-pair molecule and a single breather.

research product

Pulsating Solitons in Mode-Locked Fibre Lasers

International audience; We report on our direct experimental observation of a new regime of operation of passively mode-locked fibre lasers where the laser oscillator generates pulsating solitons with extreme ratios of maximal to minimal intensities in each period of pulsations. The soliton spectra also experience large periodic broadening and compression. Spatio-temporal intensity and dispersive Fourier-transformation measurements enable us to capture such transient dynamics in real time.

research product

Breather Molecular Complexes in a Passively Mode‐Locked Fiber Laser

International audience; Breathing solitons are nonlinear waves in which the energy concentrates in a localized and oscillatory fashion. Similarly to stationary solitons, breathers in dissipative systems can form stable bound states displaying molecule-like dynamics, which are frequently called breather molecules. So far, the experimental observation of optical breather molecules and the real-time detection of their dynamics are limited to diatomic molecules, that is, bound states of only two breathers. In this work, the observation of different types of breather complexes in a mode-locked fiber laser: multibreather molecules, and molecular complexes originating from the binding of two breat…

research product