6533b82efe1ef96bd12932dc

RESEARCH PRODUCT

Breather Molecular Complexes in a Passively Mode‐Locked Fiber Laser

Heping ZengJunsong PengDmitry V. ChurkinZihan ZhaoSonia BoscoloChristophe FinotSrikanth Sugavanam

subject

BreatherFOS: Physical sciences02 engineering and technology01 natural sciencesMolecular physics010309 opticsFiber laser0103 physical sciencesBound statePhysics::Chemical PhysicsNonlinear Sciences::Pattern Formation and SolitonsPhysics[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]Intermolecular force021001 nanoscience & nanotechnologyCondensed Matter PhysicsDiatomic moleculeAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsNonlinear Sciences::Exactly Solvable and Integrable SystemsMode-lockingDissipative systemSoliton0210 nano-technologyPhysics - OpticsOptics (physics.optics)

description

International audience; Breathing solitons are nonlinear waves in which the energy concentrates in a localized and oscillatory fashion. Similarly to stationary solitons, breathers in dissipative systems can form stable bound states displaying molecule-like dynamics, which are frequently called breather molecules. So far, the experimental observation of optical breather molecules and the real-time detection of their dynamics are limited to diatomic molecules, that is, bound states of only two breathers. In this work, the observation of different types of breather complexes in a mode-locked fiber laser: multibreather molecules, and molecular complexes originating from the binding of two breather-pair molecules or a breather pair molecule and a single breather is reported. The intermolecular temporal separation of the molecular complexes attains several hundreds of picoseconds, which is more than an order of magnitude larger than that of their stationary soliton counterparts and is a signature of long-range interactions. Numerical simulations of the laser model support the experimental findings. Moreover, nonequilibrium dynamics of breathing solitons are also observed, including breather collisions and annihilation. This work opens the possibility of studying the dynamics of many-body systems in which breathers are the elementary constituents.

10.1002/lpor.202000132https://hal.archives-ouvertes.fr/hal-03256013/document