0000000000294055

AUTHOR

Ernesto Sanchez

0000-0002-7042-295x

showing 2 related works from this author

Emulating the Effects of Radiation-Induced Soft-Errors for the Reliability Assessment of Neural Networks

2021

International audience; Convolutional Neural Networks (CNNs) are currently one of the most widely used predictive models in machine learning. Recent studies have demonstrated that hardware faults induced by radiation fields, including cosmic rays, may significantly impact the CNN inference leading to wrong predictions. Therefore, ensuring the reliability of CNNs is crucial, especially for safety-critical systems. In the literature, several works propose reliability assessments of CNNs mainly based on statistically injected faults. This work presents a software emulator capable of injecting real faults retrieved from radiation tests. Specifically, from the device characterisation of a DRAM m…

fault injectionComputer scienceNeural netsInferenceRadiation effectsRadiation inducedFault (power engineering)Convolutional neural networkSoftwareFault injectionComputer Science (miscellaneous)[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/MicroelectronicsReliability (statistics)reliabilityArtificial neural networkApproximate methodsEvent (computing)business.industryReliabilityComputer Science Applications[SPI.TRON]Engineering Sciences [physics]/ElectronicsHuman-Computer Interactionneural netsComputer engineeringapproximate methodsradiation effects[INFO.INFO-ES]Computer Science [cs]/Embedded SystemsbusinessInformation Systems
researchProduct

Investigating the Impact of Radiation-Induced Soft Errors on the Reliability of Approximate Computing Systems

2020

International audience; Approximate Computing (AxC) is a well-known paradigm able to reduce the computational and power overheads of a multitude of applications, at the cost of a decreased accuracy. Convolutional Neural Networks (CNNs) have proven to be particularly suited for AxC because of their inherent resilience to errors. However, the implementation of AxC techniques may affect the intrinsic resilience of the application to errors induced by Single Events in a harsh environment. This work introduces an experimental study of the impact of neutron irradiation on approximate computing techniques applied on the data representation of a CNN.

Approximate computingComputer scienceReliability (computer networking)Radiation effectsRadiation induced02 engineering and technologyneuroverkotExternal Data Representation01 natural sciencesConvolutional neural networkSoftwareHardware020204 information systems0103 physical sciences0202 electrical engineering electronic engineering information engineering[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/MicroelectronicsResilience (network)mikroprosessoritNeutronsResilience010308 nuclear & particles physicsbusiness.industryReliabilityApproximate computingPower (physics)[SPI.TRON]Engineering Sciences [physics]/ElectronicsComputer engineeringsäteilyfysiikka[INFO.INFO-ES]Computer Science [cs]/Embedded SystemsbusinessSoftware
researchProduct